Plasmons in a Strip with an Anisotropic Two-Dimensional Electron Gas Fully Screened by a Metal Gate
- Authors: Rodionov D.A.1,2, Zagorodnev I.V.1
-
Affiliations:
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 118, No 1-2 (7) (2023)
- Pages: 90-94
- Section: Articles
- URL: https://rjonco.com/0370-274X/article/view/663107
- DOI: https://doi.org/10.31857/S1234567823140045
- EDN: https://elibrary.ru/GYVJMS
- ID: 663107
Cite item
Abstract
Interest in anisotropic two-dimensional electron systems and in plasma oscillations in them has been growing recently. Plasmons in a strip with a two-dimensional electron gas with an elliptic Fermi surface that is located near a metal gate, which screens the fields of the two-dimensional gas, have been theoretically analyzed. The plasma eigenmodes in this system have been found analytically in the limit of strong screening and the frequencies and damping rates of these modes have been determined taking into account anisotropy, magnetic field, and electromagnetic retardation effects. It has been shown that the fundamental mode in this limit is an edge magnetoplasmon with a linear dispersion relation. The frequency, damping rate, and velocity of this magnetoplasmon are independent of the magnetic field, and the localization length near the edge is proportional to the magnetic field. The square of the frequency of any other mode is the sum of the square of the frequency of this plasma mode without magnetic field and the square of the cyclotron frequency with a coefficient, which is independent of the orientation of the conductivity tensor with respect to the edges of the strip but depends on the principal values of the effective mass tensor when electromagnetic retardation effects are taken into account.
About the authors
D. A. Rodionov
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences;Moscow Institute of Physics and Technology (National Research University)
Email: rodionov.da@phystech.edu
Moscow, 125009 Russia;Dolgoprudnyi, Moscow region, 141701 Russia
I. V. Zagorodnev
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Author for correspondence.
Email: rodionov.da@phystech.edu
Moscow, 125009 Russia
References
- F. Stern, Phys. Rev. Lett. 18, 546 (1967).
- W. Knap, Y. Deng, S.Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 81, 4637 (2002).
- V. M. Muravev and I. V. Kukushkin, Appl. Phys. Lett. 100, 082102 (2012).
- D. A. Bandurin, D. Svintsov, I. Gayduchenko et al. (Collaboration), Nat.Commun. 9, 5392 (2018).
- I. V. Zagorodnev, A. A. Zabolotnykh, D. A. Rodionov, and V. A. Volkov, Nanomaterials 13, 975 (2023).
- Ch. Wang, G. Zhang, Sh. Huang, Y. Xie, and H. Yan, Adv. Opt. Mater. 8, 1900996 (2020).
- S. Ahn and S. Das Sarma, Phys. Rev. B 103, L041303 (2021).
- F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Nature Photon. 8, 899 (2014).
- T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, Nature Mater. 16, 182 (2017).
- D. N. Basov, M. M. Fogler, and F. J. Garc'ıa de Abajo, Science 354, aag1992 (2016).
- A. Agarwal, M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, Nanoscale 10, 8938 (2018).
- A. A. Sokolik, O. V. Kotov, and Y. E. Lozovik, Phys. Rev. B 103, 155402 (2021).
- T. Low, R. Rold'an, H. Wang, F. Xia, P. Avouris, L. Mart'ın Moreno, and F. Guinea, Phys. Rev. Lett. 113, 106802 (2014).
- A. Nemilentsau, T. Low, and G. Hanson, Phys. Rev. Lett. 116, 066804 (2016).
- M. Shayegan, E. P. De Poortere, O. Gunawan, Y. P. Shkolnikov, E. Tutuc, and K. Vakili, Phys. Status Solidi B 243, 3629 (2006).
- Md. Shafayat Hossain, M. K. Ma, Y. J. Chung, S. K. Singh, A. Gupta, K. W. West, K. W. Baldwin, L. N. Pfei er, R. Winkler, and M. Shayegan, Phys. Rev. Lett. 130, 126301 (2023).
- V. M. Muravev, A. R. Khisameeva, V. N. Belyanin, I. V. Kukushkin, L. Tiemann, C. Reichl, W. Dietsche, and W. Wegscheider, Phys. Rev. B 92, 041303(R) (2015).
- A. R. Khisameeva, A. V. Shchepetilnikov, V. M. Muravev, S. I. Gubarev, D. D. Frolov, Yu. A. Nefyodov, I. V. Kukushkin, C. Reichl, L. Tiemann, W. Dietsche, and W. Wegscheider, Phys. Rev. B 97, 115308 (2018).
- A. R. Khisameeva, V. M. Muravev, and I. V. Kukushkin, Appl. Phys. Lett. 117, 093102 (2020).
- D. B. Mast, A. J. Dahm, and A. L. Fetter, Phys. Rev. Lett. 54, 1706 (1985).
- В. А. Волков, С. А. Михайлов, Письма в ЖЭТФ 42, 450 (1985).
- А. А. Заболотных, В. А. Волков, Письма в ЖЭТФ 104, 424 (2016).
- E. Nikulin, D. Mylnikov, D. Bandurin, and D. Svintsov, Phys. Rev. B 103, 085306 (2021).
- B. Lax, H. J. Zeiger, and R. N. Dexter, Physica 20, 818 (1954).
- S. A. Mikhailov and N. A. Savostianova, Phys. Rev. B 71, 035320 (2005).
- Н. Д. Семенов, В. М. Муравьев, И. В. Андреев, И. В. Кукушкин, Письма в ЖЭТФ 114, 669 (2021).
- V. M. Muravev, C. Jiang, I. V. Kukushkin, J. H. Smet, V. Umansky, and K. von Klitzing, Phys. Rev. B 75, 193307 (2007).
- А. В. Чаплик, ЖЭТФ 62, 746 (1972).
- V. A. Volkov and S. A. Mikhailov, ZhETF 94, 217 (1988).
- А. В. Чаплик, Письма в ЖЭТФ 101, 602 (2015).
- D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, K. Soljaˇci'c, L. Fu, and N. X. Fang, Nat.Commun. 7, 13486 (2016).
- D. A. Rodionov and I. V. Zagorodnev, Phys. Rev. B 106, 235431 (2022).
- A. A. Zabolotnykh and V. A. Volkov, Phys. Rev. B 103, 125301 (2021).
Supplementary files
