Cascade Formation of Topological Defects and Satellite Droplets in Liquid Crystals at Dynamic Capillary Instability

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of topological defects at the nematic–isotropic liquid interface and near satellite droplets has been detected at the breakup and fragmentation of the bridge of the isotropic phase between nematic domains. This process has been implemented in thin optical cells filled with a liquid crystal. The critical width of the bridge at which a universal time dependence of its width is determined by the capillary velocity (ratio of the surface tension to the viscosity) has been determined.

About the authors

P. V. Dolganov

Institute of Solid State Physics, Russian Academy of Sciences

Email: masalov@issp.ac.ru
Russian Federation, ul. Akademika Osip’yana 2, Chernogolovka, Moscow oblast, 142432

N. A. Spiridenko

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: pauldol@issp.ac.ru
Chernogolovka, Moscow region, 142432 Russia

V. K. Dolganov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: pauldol@issp.ac.ru
Chernogolovka, Moscow region, 142432 Russia

E. I. Kats

Landau Institute for Theoretical Physics, Russian Academy of Sciences

Email: pauldol@issp.ac.ru
Chernogolovka, Moscow region, 142432 Russia

K. D. Baklanova

Osipyan Institute of Solid State Physics, Russian Academy of Sciences;HSE University

Author for correspondence.
Email: pauldol@issp.ac.ru
Chernogolovka, Moscow region, 142432 Russia;Moscow, 101000 Russia

References

  1. J. Eggers, Rev. Mod. Phys. 69, 865 (1997).
  2. J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).
  3. W. S. Rayleigh, Proc. London Math. Soc. 4, 10 (1878).
  4. N. Bohr, Phil. Trans. Roy. Soc. Lond. 209, 281 (1909).
  5. J. Plateau, Statique Exp'erimentale et Th'eoretique des Liquides Soumisaux Seules Forces Mol'ecoulaires, Gautethier-Villars, Paris (1873).
  6. Y. Lee and J. E. Sprittles, J. Fluid Mech. 797, 29 (2016).
  7. H. A. Stone, B. J. Bentley, and L. G. Lead, J. Fluid Mech. 173, 131 (1986).
  8. B. M. Tjahjadi, H. A. Stone, and J. M. Ottino, J. Fluid Mech. 243, 297 (1992).
  9. X. Zhang, R. S. Padgett, and O. A. Basaran, J. Fluid Mech. 329, 207 (1996).
  10. J. C. Burton, J. E.Rutledge, and P. Taborek, Phys. Rev. Lett. 92, 244505 (2004).
  11. J. C. Burton and P. Taborek, Phys. Rev. Lett. 98, 224502 (2007).
  12. E. Alvarez-Lacalle, J. Casademunt, and J. Eggers, Phys. Rev. E 80, 056306 (2009).
  13. A. A. Castrejon-Pita, J. R. Castrejon-Pita, and I. M. Hutchings, Phys. Rev. Lett. 108, 074506 (2012).
  14. D. Tiwari, L. Mercury, M. Dijkstra, H. Chaudhary, and J. F. Hern'andez-S'anchez, Phys. Rev. Fluids 3, 124202 (2018).
  15. H. Wee, B. W. Wagoner, P. M. Kamat, and O. A. Basaran, Phys. Rev. Lett. 124, 204501 (2020).
  16. P. Bazazi, H. A. Stone, and S. H. Hejazi, Phys. Rev. Lett. 130, 034001 (2023).
  17. J. R. Lister and H. A. Stone, Phys. Fluids 10, 2758 (1998).
  18. A. B. Bazilevskii and A. N. Rozhkov, Fluid Dynamics 50, 800 (2015).
  19. A. Deblais, M. A. Herrada, I. Hauner, K. P. Velikov, T. van Roon, H. Kellay, J. Eggers, and D. Bonn, Phys. Rev. Lett. 121, 254501 (2018).
  20. N. B. Speirs, K. R. Langley, P. Taborek, and S. T. Thoroddsen, Phys. Rev. Fluids 5, 044001 (2020).
  21. П. Ж. де Жен, Физика жидких кристаллов, пер.с англ., Мир, М. (1978), 400 с.
  22. М. Клеман, О. Д. Лаврентович, Основы физики частично упорядоченных сред, пер. с англ., ФИЗМАТЛИТ, М. (2007), 680 с.
  23. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, Taylor and Francis, Boca Raton (2005).
  24. I. Cohen, M. P. Brenner, J. Eggers, and S. R. Nagel, Phys. Rev. Lett. 83, 1147 (1999).
  25. J. Eggers and Z. Angew, Math. Mech. 85(6), 400 (2005).
  26. P. V. Dolganov, A. S. Zverev, K. D. Baklanova, and V. K. Dolganov, Phys. Rev. E 104, 014702 (2021).
  27. T. C. Lubensky and J. Prost, J. Phys. II France 2, 371 (1992).
  28. Y.-K. Kim, S. V. Shiyanovskii, and O. D. Lavrentovich, J. Phys. Condens. Matter 25, 404202 (2013).
  29. P. V. Dolganov and N. A. Spiridenko, Liq. Cryst. 49, 1933 (2022).
  30. S. Faetti, Mol. Cryst. Liq. Cryst. 179, 217 (1990).
  31. Y.-J. Chen and P. H. Steen, J. Fluid Mech. 341, 245 (1997).
  32. D. T. Papageorgiou, J. Fluid Mech. 301, 109 (1995).
  33. D. T. Papageorgiou, Phys. Fluids 7, 1529 (1995).
  34. T. A. Kowalewski, Fluid Dyn. Res. 17, 121 (1996).
  35. G. H. McKinley and A. Tripathi, J. Rheol. 44, 653 (2000).
  36. J. Eggers, Phys. Rev. Lett. 71, 3458 (1993).
  37. P. Oswald and G. Poy, Phys. Rev. E 92, 062512 (2015).
  38. H. Wang, T. X. Wu, S. Ganza, J. R. Wu, and S.-T. Wu, Liq. Cryst. 33, 91 (2006).
  39. R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, J. Appl. Phys. 119, 185107 (2016).
  40. П. В. Долганов, В. К. Долганов, Е. И. Кац, Письма в ЖЭТФ 115, 236 (2022).
  41. К. Д. Бакланова, В. К. Долганов, Е. И. Кац, П. В. Долганов, Письма в ЖЭТФ 117, 537 (2023).
  42. A. V. Subbotin and A. N. Semenov, Macromolecules 55, 2096 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук