Generation of Giant Magnetic Fields in a Hollow Mesoscale Sphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The superresonance effect for a hollow dielectric sphere is numerically simulated with the Mie theory. It is shown for the first time that weakly dissipative mesoscale spheres with an air-filled cavity exhibit a high-order Fano resonance related to internal Mie modes. Superresonance in a hollow sphere is achieved by the accurate choice of the cavity radius, while for a monolithic dielectric sphere, it is ensured by the accurate choice of the outer diameter of the particle under study. In this case, the relative intensities of the resonance peaks in the optical range for both magnetic and electric fields near the sphere poles can have enormous values of 106−107, if the magnetic field magnitude exceeds that of the electric field by a factor larger than 15 for the hollow sphere with a Mie size parameter about 40.

About the authors

O. V. Minin

Tomsk Polytechnic University

Email: prof.minin@gmail.com
Tomsk, 634050 Russia

S. Dzhou

Huaiyin Institute of Technology

Email: prof.minin@gmail.com
Huai’an, 223003 People’s Republic of China

I. V. Minin

Tomsk Polytechnic University

Author for correspondence.
Email: prof.minin@gmail.com
Tomsk, 634050 Russia

References

  1. B. Luk'yanchuk, N. I. Zheludev, S.A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C.T. Chong, Nature Mater. 9, 707 (2010).
  2. П. Тонкаев, Ю. Кившарь, Письма в ЖЭТФ 112(10), 658 (2020).
  3. A.E. Miroshnichenko, Phys. Rev. A 81, 053818 (2010).
  4. H. Chen, L. Shao, Y.C. Man, C. Zhao, J. Wang, and B. Yang, Nano-micro small. 8(10), 1503 (2012).
  5. S. Garg and M. Venkatapathi, J. Opt. 19, 075603 (2017).
  6. M. Retsch, M. Schmelzeisen, H.-J. Butt, and E. L. Thomas, Nano Lett. 11, 1389 (2011).
  7. S. Liu, B. Shi, Y. Wang, L. Cui, J. Yamg, W. Sun, and H.Li, Opt. Lett. 42(22), 4659 (2017).
  8. Д.В. Стороженко, В.П. Дзюба, Ю.Н. Кульчин, Письма в ЖТФ 44(16), 75 (2018).
  9. B. Keen and A. Porter, Roy. Soc. Proc. A 89, 370 (1913).
  10. Z. Wang, B. Luk'yanchuk, L. Yue, B. Yan, J. Monks, R. Dhama, O.V. Minin, I.V. Minin, S. Huang, and A. Fedyanin, Sci. Rep. 9, 20293 (2019).
  11. L. Yue, B. Yan, J. Monks, Y. Joya, R. Dhama, O.V. Minin, and I.V. Minin, Ann. Phys. (Berlin) 532, 2000373 (2020).
  12. B. S. Luk'yanchuk, A. Bekirov, Z. Wang, I.V. Minin, O.V. Minin, and A. Fedyanin, Physics of Wave Phenomena 30(4), 217 (2022).
  13. V.R. Dantham and P.B. Bisht, J. Opt. Soc. Am. B 26(2), 290 (2009).
  14. S. Liu, B. Shi, W. Sun, H. Li, and J. Yang, Appl. Phys. Express 11, 082201 (2018).
  15. T. Yang, T. Fu, and Y. An, Phys. Plasmas 29, 012103 (2022).
  16. Y. Cao, Z. Liu, O.V. Minin, and I.V. Minin, Nanomaterials 9(2), 186 (2019).
  17. Y. Geints, O.V. Minin, and I.V. Minin, Opt. Commun. 524, 128779 (2022).
  18. I.V. Minin, O.V. Minin, and S. Zhou, JETP Lett. 116(3), 144 (2022).
  19. W. Cai, U. Chettiar, H. Yuan, V. de Silva, A. Kildishev, V. Drachev, and V. Shalaev, Opt. Express 15, 3333 (2007).
  20. I.V. Minin, O.V. Minin, and S. Zhou, Tech. Phys. Lett. 48(18), 41 (2022).
  21. O.V. Minin, I.V. Minin, and S. Zhou, Optoelectronics, Instrumentation and Data Processing 58(5), 514 (2022).
  22. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, WILEY-VCH Verlag, N.Y. (1998).
  23. R. L. Hightower and C. B. Richardson, Appl. Opt. 27(23), 4850 (1988).
  24. I. L. Rasskazov, P. S. Carney, and A. Moroz, OSA Continuum 3, 2290 (2020).
  25. Г.П. Зограф, Й.Ф. Ю, К.В. Барышникова, А.И. Кузнецов, С.В. Макаров, Письма в ЖЭТФ 107(11), 732 (2018).
  26. T. Hoang, Y. Duan, X. Chen, and G. Barbastathis, Opt. Express 23(9), 12337 (2015).
  27. A. Chiasera, Y. Dumeige, P. Feron,M. Ferrari, Y. Jestin, G. Conti, S. Pelli, S. Soria, and G. Righini, Laser Photonics Rev. 4(3), 457 (2010).
  28. А.П. Тарасов, А.С. Лавриков, Л.А. Задорожная, В.М. Каневский, Письма в ЖЭТФ 115(9), 554 (2022).
  29. А.Н. Ораевский, Квантовая электроника 32(5), 377 (2002).
  30. D. Pluchon, N. Huby, V. Vie, P. Panizza, and B. Beche, Optics and Photonics Journal 3(4), 291 (2013).
  31. I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S.K. Ozdemir, H.D. Robinson, J.R. Heflin, L. Yang, and Y. Xu, Opt. Express 21, 20601 (2013).
  32. X. Xie and X. Zhou, Colloids and Surfaces A: Physicochem. Eng. Aspects 386, 158 (2011).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук