Energy Spectrum of the Valence Band in HgTe Quantum Wells on the Way from a Two- to Three-Dimensional Topological Insulator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The magnetic field and temperature dependences of longitudinal magnetoresistance and the Hall effect have been measured in order to determine the energy spectrum of the valence band in HgTe quantum wells with the width dQW = 20–200 nm. The comparison of hole densities determined from the period of Shubnikov–de Haas oscillations and the Hall effect shows that states at the top of the valence band are doubly degenerate in the entire dQW range, and the cyclotron mass 
 determined from the temperature dependence of the amplitude of Shubnikov–de Haas oscillation increases monotonically from 
 to 
 (
 is the mass of the free electron) with increasing hole density 
 from 
 to 
 cm–2. The determined dependence has been compared to theoretical dependences 
 calculated within the four-band kP model. These calculations predict an approximate stepwise increase in 
 owing to the pairwise merging of side extrema with increasing hole density, which should be observed at 
 and 4 × 1010 cm–2 for dQW = 20 and 200 nm, respectively. The experimental dependences are strongly inconsistent with this prediction. It has been shown that the inclusion of additional factors (electric field in the quantum well, strain) does not remove the contradiction between the experiment and theory. Consequently, it is doubtful that the mentioned kP calculations adequately describe the valence band at all dQW values.

About the authors

G. M Min'kov

Ural Federal University, 620000, Yekaterinburg, Russia; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

Email: grigori.minkov@urfu.ru

O. E Rut

Novosibirsk State University, 630090, Novosibirsk, Russia

Email: grigori.minkov@urfu.ru

A. A Sherstobitov

Novosibirsk State University, 630090, Novosibirsk, Russia; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

Email: grigori.minkov@urfu.ru

S. A Dvoretskiy

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia; Novosibirsk State University, 630090, Novosibirsk, Russia

Email: grigori.minkov@urfu.ru

N. N Mikhaylov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia; Novosibirsk State University, 630090, Novosibirsk, Russia

Email: grigori.minkov@urfu.ru

V. Ya Aleshkin

Institute for Physics of Microstructures, Russian Academy of Sciences, 603087, Afonino, Nizhny Novgorod region, Russia

Author for correspondence.
Email: grigori.minkov@urfu.ru

References

  1. L. G. Gerchikov and A. Subashiev, Phys. Status Solidi b 160, 443 (1990).
  2. X. C. Zhang, A. Pfeu er-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, Phys. Rev. B 63, 245305 (2001).
  3. E. G. Novik, A. Pfeu er-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, G. Landwehr, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 72, 035321 (2005).
  4. Y. Ren, Z. Qiao, and Q. Niu, Rep. Progr. Phys. 79(6), 066501 (2016); doi: 10.1088/0034-4885/79/6/066501.
  5. C. R. Becker, V. Latussek, G. Landwehr, and L. W. Molenkamp, Phys. Rev. B 68, 035202 (2003).
  6. S. Dvoretsky, N. Mikhailov, Yu. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S. Ganichev, ElectronicMaterials 39, 918 (2010).
  7. G. Landwehr, J. Gerschu¨tz, S. Oehling, A. Pfeu er-Jeschke, V. Latussek, and C. R. Becker, Physica E 6, 713 (2000).
  8. X. C. Zhang, A. Pfeu er-Jeschke, K. Ortner, C. R. Becker, and G. Landwehr, Phys. Rev. B 65, 045324 (2002).
  9. K. Ortner, X. C. Zhang, A. Pfeu er-Jeschke, C. R. Becker, G. Landwehr, and L. W. Molenkamp, Phys. Rev. B 66, 075322 (2002).
  10. Z. D. Kvon, E. B. Olshanetsky, E. G. Novik, D. A. Kozlov, N. N. Mikhailov, I. O. Parm, and S. A. Dvoretsky, Phys. Rev. B 83, 193304 (2011).
  11. X. C. Zhang, A. Pfeu er-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, Phys. Rev. B 63, 245305 (2001).
  12. M. S. Zholudev, A. V. Ikonnikov, F. Teppe, M. Orlita, K. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, W. Knap, S. A. Dvoretskiy, and N. N. Mihailov, Nanoscale Res. Lett. 7, 534 (2012).
  13. G. M. Minkov, V. Ya. Aleshkin, O. E.Rut, A. A. Sherstobitov, A. V. Germanenko, S. A. Dvoretski, and N. N. Mikhailov, Physica E 116, 113742 (2020)
  14. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures, Alpha Science International, Harrow, UK (2005), p. 427.
  15. З. Д. Квоn, М. Л. Савченко, Д. А. Козлов, Е. Б. Ольшанецкий, А. С. Ярошевич, Н. Н. Михайлов, Письма в ЖЭТФ 112(3), 174 (2020).
  16. А. Ю. Кунцевич, Е. В. Тупиков, С. А. Дворецкий, Н. Н. Михайлов, М. Резников, Письма в ЖЭТФ 111(11), 750 (2020).
  17. G. M. Minkov, A. V. Germanenko, O. E.Rut, A. A. Sherstobitov, M. O. Nestoklon, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 93, 155304 (2016).
  18. G. M. Minkov, V. Ya. Aleshkin, O. E.Rut, A. A. Sherstobitov, A. V. Germanenko, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 96, 035310 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук