Multicomponent Current Sheet of the Magnetopause with an Arbitrary Energy Distribution of Particles
- Authors: Nechaev A.A.1, Kocharovskiy V.V.1, Kocharovskiy V.V.2, Garasev M.A.1
-
Affiliations:
- Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
- Department of Physics and Astronomy, Texas A&M University
- Issue: Vol 117, No 3-4 (2) (2023)
- Pages: 220-227
- Section: Articles
- URL: https://rjonco.com/0370-274X/article/view/663512
- DOI: https://doi.org/10.31857/S1234567823030072
- EDN: https://elibrary.ru/OXBRTJ
- ID: 663512
Cite item
Abstract
An exact solution to the Maxwell–Vlasov equations has been found for a large class of multicomponent current sheets in collisionless plasma, which describe the spatial structure of the current in the magnetopause and consistent inhomogeneous anisotropic momentum distributions of particles with different effective temperatures. Devised sheets allow a nonmonotonic variation of the magnetic field and can have asymmetric, multihump, and sign-alternating profiles of the current density. Profiles of the current of different particle populations can have different scales, contain countercurrents, and be spatially shifted with respect to each other. The model under consideration is applicable to qualitatively describe a magnetopause separating a magnetosphere of a planet from a solar wind or separating regions of the solar wind with different parameters of the plasma and magnetic field.
About the authors
A. A. Nechaev
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia
Vl. V. Kocharovskiy
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia
V. V. Kocharovskiy
Department of Physics and Astronomy, Texas A&M University
Email: a.nechaev@ipfran.ru
TX 77843, College Station, USA
M. A. Garasev
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Author for correspondence.
Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia
References
- A.B. Lotekar, I.Y. Vasko, T. Phan, S.D. Bale, T.A. Bowen, J. Halekas, A.V. Artemyev, Yu.V. Khotyaintsev, and F. S. Mozer, Astrophys. J. 929, 58 (2022).
- J. L. Burch and T.D. Phan, Geophys. Res. Lett. 43, 8327 (2016).
- R. Nakamura, A. Varsani, K. J. Genestreti et al. (Collaboration), Journal of Geophysical Research: Space Physics 123, 1260 (2018).
- C. Norgren, D.B. Graham, Y.V. Khotyaintsev, M. Andr'e, A. Vaivads, M. Hesse, E. Eriksson, P.-A. Lindqvist, B. Lavraud, J. Burch, S. Fuselier, W. Magnes, D. J. Gershman, and C.T. Russell, Journal of Geophysical Research: Space Physics 123, 9222 (2018).
- P. Louarn, A. Fedorov, E. Budnik, G. Fruit, J.A. Sauvaud, C.C. Harvey, I. Dandouras, H. R'eme, M.C. Dunlop, and A. Balogh, Geophys. Res. Lett. 31, L19805 (2004).
- M.W. Dunlop, M.G.G.T. Taylor, Y.V. Bogdanova et al. (Collaboration), Journal of Geophysical Research: Space Physics 113, A07S19 (2008).
- S. Haaland, A. Runov, A. Artemyev, and V. Angelopoulos, Journal of Geophysical Research: Space Physics 124, 3421 (2019).
- L. F. Burlaga, N.F. Ness, D.B. Berdichevsky, J. Park, L.K. Jian, A. Szabo, E.C. Stone, and J.D. Richardson, Nat. Astron. 3, 1007 (2019).
- S.M. Krimigis, R.B. Decker, E.C. Roelof, M. E. Hill, C.O. Bostrom, K. Dialynas, G. Gloeckler, D.C. Hamilton, E.P. Keath, and L. J. Lanzerotti, Nat. Astron. 3, 997 (2019).
- J.D. Richardson, J.W. Belcher, P. Garcia-Galindo, and L. F. Burlaga, Nat. Astron. 3, 1019 (2019).
- D.A. Gurnett and W. S. Kurth, Nat. Astron. 3, 1024 (2019).
- J.R. Shuster, D. J. Gershman, J.C. Dorelli et al. (Collaboration), Nat. Phys. 17, 1056 (2021).
- M.M. Echim and J. F. Lemaire, Phys. Rev. E 72, 036405 (2005).
- N. Dorville, G. Belmont, N. Aunai, J. Dargent, and L. Rezeau, Phys. Plasmas 22, 092904 (2015).
- S.P. Gary, Theory of space plasma microinstabilities, Cambridge University Press, Cambridge (1993), 184 p.
- V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and S.V. Tarasov, Phys.-Uspekhi 59, 1165 (2016).
- O. Allanson, F. Wilson, T. Neukirch, Y.-H. Liu, and J.D.B. Hodgson, Geophys. Res. Lett. 44, 8685 (2017).
- T. Neukirch, I.Y. Vasko, A.V. Artemyev, and O. Allanson, Astrophys. J. 891, 86 (2020).
- E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Pergamon, Oxford (1981), p. 115.
- V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and A.A. Nechaev, Astron. Lett. 45, 551 (2019).
- Vl.V. Kocharovsky, V.V. Kocharovsky, and A.A. Nechaev, Dokl. Phys. 66, 9 (2021).
- V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and A.A. Nechaev, J. Phys. Conf. Ser. 932, 012019 (2017).
- T. Silva, B. Afeyan, and L.O. Silva, Phys. Rev. E 104, 035201 (2021).
- A.A. Kuznetsov, V.V. Kocharovskii, Vl.V. Kocharovskii, A.A. Nechaev, and M.A. Garasev, Plasma Phys. Rep. 48, 973 (2022).
- K.Yu. Vagin and S.A. Uryupin, Plasma Phys. Rep. 40, 393 (2014).
- T.D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N. J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, and C.P. Ridgers, Plasma Phys. Control. Fusion 57, 113001 (2015).
Supplementary files
