On the Laser Generation in Two-Dimensional Materials with Pumping by Quasitrapped Modes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model has been proposed to describe the laser generation of two-dimensional semiconductor films with near-field pumping by quasitrapped modes excited in dielectric metasurfaces. A metastructure consisting of a Si metasurface coated with a MoTe2 film, where narrow-band resonance of a quasitrapped mode is joined with a broad exciton resonance of a two-dimensional material, has been designed. Threshold conditions for generation in the MoTe2 film with pumping by quasitrapped modes have been determined. The possibility of polarization control of the emission of the proposed metastructure has been demonstrated.

About the authors

M. Yu. Gubin

Department of Physics and Applied Mathematics, Vladimir State University; Center of Photonics and Two-Dimensional Materials, Moscow Institute of Physics and Technology (National Research University)

Email: alprokhorov33@gmail.com
600000, Vladimir, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

A. V. Shesterikov

Department of Physics and Applied Mathematics, Vladimir State University; Center of Photonics and Two-Dimensional Materials, Moscow Institute of Physics and Technology (National Research University)

Email: alprokhorov33@gmail.com
600000, Vladimir, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

V. S. Volkov

Center of Photonics and Two-Dimensional Materials, Moscow Institute of Physics and Technology (National Research University)

Email: alprokhorov33@gmail.com
141701, Dolgoprudnyi, Moscow region, Russia

A. V. Prokhorov

Department of Physics and Applied Mathematics, Vladimir State University; Center of Photonics and Two-Dimensional Materials, Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: alprokhorov33@gmail.com
600000, Vladimir, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

References

  1. M. I. Stockman, J. Opt. 12, 024004 (2010).
  2. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature 460, 1110 (2009).
  3. A. V. Shesterikov, M. Yu. Gubin, S. N. Karpov, and A. V. Prokhorov, JETP Lett. 107, 435 (2018).
  4. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Nano Lett. 12, 3749 (2012).
  5. P. Tonkaev and Yu. Kivshar, JETP Lett. 112, 615 (2020).
  6. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk'yanchuk, Sci. Rep. 2, 492 (2012).
  7. E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, ACS Nano 14, 8149 (2020).
  8. N. M. Shubin, V. V. Kapaev, and A. A. Gorbatsevich, JETP Lett. 116, 205 (2022).
  9. A. M. Chernyak, M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A. A. Fedyanin, JETP Lett. 111, 46 (2020).
  10. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljaˇci'c, Nat. Rev. Mater. 1, 16048 (2016).
  11. A. B. Evlyukhin, V. R. Tuz, V. S. Volkov, and B. N. Chichkov, Phys. Rev. B 101, 205415 (2020).
  12. A. V. Prokhorov, A. V. Shesterikov, M. Yu. Gubin, V. S. Volkov, and A. B. Evlyukhin, Phys. Rev. B 106, 035412 (2022).
  13. Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, Nature Nanotechnol. 12, 987 (2017).
  14. G. A. Ermolaev, D. V. Grudinin, Y. V. Stebunov et al. (Collaboration), Nat.Commun. 12, 854 (2021).
  15. M. M. Glazov and E. L. Ivchenko, JETP Lett. 113, 10 (2021).
  16. A. B. Evlyukhin, M. A. Poleva, A. V. Prokhorov, K. V. Baryshnikova, A. E. Miroshnichenko, and B. N. Chichkov, Laser Photonics Rev. 15, 2100206 (2021).
  17. A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, Phys. Rev. B 94, 205434 (2016).
  18. A. B. Evlyukhin and B. N. Chickov, Phys. Rev. B 100, 125415 (2019).
  19. D. Ghazaryan, M. T. Greenaway, Z. Wang et al. (Collaboration), Nat. Electron. 1, 344 (2018).
  20. I. G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, and A. F. Morpurgo, Nano Lett. 15, 2336 (2015).
  21. A. R. Beal and H. P. Hughes, J. Phys. C: Solid State Phys. 12, 881 (1979).
  22. A. Baranov and E. Tournie, Semiconductor lasers. Fundamentals and applications; Woodhead Publishing Series in Electronic and Optical Materials # 33, Woodhead Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi (2013).
  23. Q. Gu and Y. Fainman, Semiconductor Nanolasers, Cambridge University Press, Cambridge (2017).
  24. L. Li, M.-F. Lin, X. Zhang, A. Britz, A. Krishnamoorthy, R. Ma, R. K. Kalia, A. Nakano, P. Vashishta, P. Ajayan, M. C. Ho mann, D. M. Fritz, U. Bergmann, and O. V. Prezhdo, Nano Lett. 19, 6078 (2019).
  25. C. Z. Ning, IEEE J. Sel. Top. Quantum Electron. 19, 1503604 (2013).
  26. B. Munkhbat, P. Wrobel, T. J. Antosiewicz, and T. Shegai, arXiv:2203.13793 (2022).
  27. Z. -Y. Li and Y. Xia, Nano Lett. 10, 243 (2010).
  28. Y. Zhang, J. Li, Y. Wu, L. Liu, X. Ming, T. Jia, and H. Zhang, Plasmonics 12, 1983 (2017).
  29. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Nat.Commun. 5, 3402 (2014).
  30. А. А. Жаров, Н. А. Жарова, JETP 162, 844 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук