Pair Correlation Function of Vorticity in a Coherent Vortex
- Authors: Kolokolov I.V1,2, Lebedev V.V1,2, Tumakova M.M1,2
-
Affiliations:
- Landau Institute for Theoretical Physics, Russian Academy of Sciences
- National Research University Higher School of Economics
- Issue: Vol 117, No 1-2 (1) (2023)
- Pages: 127-131
- Section: Articles
- URL: https://rjonco.com/0370-274X/article/view/663624
- DOI: https://doi.org/10.31857/S1234567823020076
- EDN: https://elibrary.ru/OERBUL
- ID: 663624
Cite item
Abstract
We study the correlations of vorticity fluctuations inside a coherent vortex resulting from the inverse energy cascade in two-dimensional turbulence. The presence of a coherent flow, which is a differential rotation, suppresses small-scale fluctuations of the flow, which are created by an external force, and lead to the fact that these fluctuations can be considered as non-interacting and, therefore, examined in a linear approximation. We calculate the pair correlation function of vorticity and demonstrate that it has a power-law behavior both in space and in time. The obtained results allow us to start a systematic study of the effects associated with the nonlinear interaction of fluctuations, which play an essential role on the periphery of a coherent vortex. Our results are also applicable to the statistics of a passive scalar in a strong shear flow.
About the authors
I. V Kolokolov
Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics
Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia
V. V Lebedev
Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics
Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 190008, St. Petersburg, Russia
M. M Tumakova
Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics
Author for correspondence.
Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia
References
- R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
- C. E. Leith, Phys. Fluids 11, 671 (1968).
- G. K. Batchelor, Phys. Fluids 12, 233 (1969).
- R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547 (1980).
- G. Bo etta and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012).
- H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101 (2009).
- A. V. Orlov, M. Yu. Brazhnikov, and A. A. Levchenko, Pis'ma v ZhETF 107, 166 (2018)
- JETP Lett. 107, 157 (2018).
- L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 (1994).
- M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 99(8), 084501 (2007).
- J. Laurie, G. Bo etta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113(25), 254503 (2014).
- I. V. Kolokolov and V. V. Lebedev, Pis'ma v ZhETF 101, 181 (2015)
- JETP Lett. 101, 164 (2015).
- I. V. Kolokolov and V. V. Lebedev, Phys. Rev. E 93, 033104 (2016).
- I. V. Kolokolov and V. V. Lebedev, J. Fluid Mech. 809, R2 (2016).
- A. Frishman, J. Laurie, and G. Falkovich, Phys. Rev. Fluids 2, 032602 (2017).
- И. В. Колоколов, В. В. Лебедев, Письма в ЖЭТФ 106, 633 (2017)
- I. V. Kolokolov and V. V. Lebedev, JETP Lett. 106, 659 (2017).
- I. Kolokolov and V. Lebedev, Phys. Rev. E 102, 023108 (2020).
- A. N. Doludenko, S. V. Fortova, I. V. Kolokolov, and V. V. Lebedev, Ann. Phys. 447, 169072 (2022).
- M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, J. Fluid Mech. 531, 251 (2005).
- M. Souzy, I. Zaier, H. Lhuissier, T. Le Borgne, and B. Metzger, J. Fluid Mech. 838, R3 (2018).
Supplementary files
