Rotating Temperature Wave in a Thin Water Layer
- Authors: Kerekelitsa I.V1, Martyushev L.M1,2
-
Affiliations:
- Ural Federal University, 620002, Yekaterinburg, Russia
- Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia
- Issue: Vol 117, No 7-8 (4) (2023)
- Pages: 523-529
- Section: Articles
- URL: https://rjonco.com/0370-274X/article/view/664127
- DOI: https://doi.org/10.31857/S1234567823070078
- EDN: https://elibrary.ru/JTSTOQ
- ID: 664127
Cite item
Abstract
The convective motion of water in a small cylindrical container, where the bottom and walls are heated and maintained at a constant temperature and heat is removed from the top surface, has been studied numerically. The no-slip condition is specified at the water–air interface to simulate the effect of a thin absorption film. A temperature wave, which rotates in parallel to the surface at an angular velocity of (0.06 ± 0.02) rad/s, has been detected for the first time in this system. This wave is high-mode, has a frequency of about 0.1 Hz, and is observed in very narrow ranges of the dimensions of the container and temperatures.
About the authors
I. V Kerekelitsa
Ural Federal University, 620002, Yekaterinburg, Russia
Email: leonidmartyushev@gmail.com
L. M Martyushev
Ural Federal University, 620002, Yekaterinburg, Russia; Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia
Author for correspondence.
Email: leonidmartyushev@gmail.com
References
- F. H. Busse, Rep. Prog. Phys. 41, 1929 (1978).
- A. V. Getling, B'enard-Rayleigh Convection: Structures and Dynamics, World Scienti c (1998).
- M. F. Schatz1 and G. P. Neitzel, Annu. Rev. Fluid Mech. 33, 93 (2001).
- W. G. Spangenberg and W. R. Rowland, Phys. Fluids 4, 743 (1961).
- K. B. Katsaros, W. T. Liu, J. A. Businger, and J. E. Tillman, J. Fluid Mech. 83, 311 (1977).
- R. J. Volino and G. B. Smith, Exp. Fluids 27, 70 (1999).
- K. A. Flack, J. R. Saylor, and G. B. Smith, Phys. Fluids 13, 3338 (2001).
- K. E. Torrance, J. Fluid Mech. 96, 477 (1979).
- A. I. Mizev, J. Appl. Mech. Tech. Phys. 45(4), 486 (2004).
- M. C. Navarro, A. M. Mancho, and H. Herrero, Chaos 17, 023105 (2007).
- A. Sukhanovskii, A. Evgrafova, and E. Popova, Physica D 316, 23 (2016).
- D. A.Rusova and L. M. Martyushev, AIP Conf. Proc. 2174, 020162 (2019).
- L. M. Martyushev, D. A.Rusova, and K. V. Zvonarev, Phys. Fluids 34, 053112 (2022).
- I. V. Kerekelitsa, K. V. Zvonarev, and L. M. Martyushev, AIP Conf. Proceed. 2466, 070007 (2022).
- K. V. Zvonarev, D. A.Rusova, and L. M. Martyushev, Phys. Fluids 34, 123114 (2022).
- N. A. Vinnichenko, Y. Y. Plaksina, K. M. Baranova, A. V. Pushtaev, and A. V. Uvarov, Environ. Fluid Mech. 18, 1045 (2018).
- Y. Rudenko, N. Vinnichenko, Y. Plaksina, A. V. Pushtaev, and A. V. Uvarov, J. Fluid Mech. 944, A35 (2022).
- D. J. Tritton, Physical Fluid Dynamics, Van Nostrand Reinhold Co., N.Y. (1977).
- L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., Course of Theoretical Physics, v. 6, Pergamon Press, Oxford (1987).
- G. Karapetsas, O. K. Matar, P. Valluri, and K. Se ane, Langmuir 28, 11433 (2012).
- K. Se ane, J. R. Mo at, O. K. Matar, and R. V. Craster, App. Phys. Lett. 93, 074103 (2008).
- С. В. Филатов, А. А. Левченко, Л. П. Межов-Деглин, Письма в ЖЭТФ 111(10), 653 (2020).
- А. А. Гаврилина, Л. Ю. Бараш, ЖЭТФ 159(2), 359 (2021).
Supplementary files
