Rotating Temperature Wave in a Thin Water Layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The convective motion of water in a small cylindrical container, where the bottom and walls are heated and maintained at a constant temperature and heat is removed from the top surface, has been studied numerically. The no-slip condition is specified at the water–air interface to simulate the effect of a thin absorption film. A temperature wave, which rotates in parallel to the surface at an angular velocity of (0.06 ± 0.02) rad/s, has been detected for the first time in this system. This wave is high-mode, has a frequency of about 0.1 Hz, and is observed in very narrow ranges of the dimensions of the container and temperatures.

About the authors

I. V Kerekelitsa

Ural Federal University, 620002, Yekaterinburg, Russia

Email: leonidmartyushev@gmail.com

L. M Martyushev

Ural Federal University, 620002, Yekaterinburg, Russia; Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia

Author for correspondence.
Email: leonidmartyushev@gmail.com

References

  1. F. H. Busse, Rep. Prog. Phys. 41, 1929 (1978).
  2. A. V. Getling, B'enard-Rayleigh Convection: Structures and Dynamics, World Scienti c (1998).
  3. M. F. Schatz1 and G. P. Neitzel, Annu. Rev. Fluid Mech. 33, 93 (2001).
  4. W. G. Spangenberg and W. R. Rowland, Phys. Fluids 4, 743 (1961).
  5. K. B. Katsaros, W. T. Liu, J. A. Businger, and J. E. Tillman, J. Fluid Mech. 83, 311 (1977).
  6. R. J. Volino and G. B. Smith, Exp. Fluids 27, 70 (1999).
  7. K. A. Flack, J. R. Saylor, and G. B. Smith, Phys. Fluids 13, 3338 (2001).
  8. K. E. Torrance, J. Fluid Mech. 96, 477 (1979).
  9. A. I. Mizev, J. Appl. Mech. Tech. Phys. 45(4), 486 (2004).
  10. M. C. Navarro, A. M. Mancho, and H. Herrero, Chaos 17, 023105 (2007).
  11. A. Sukhanovskii, A. Evgrafova, and E. Popova, Physica D 316, 23 (2016).
  12. D. A.Rusova and L. M. Martyushev, AIP Conf. Proc. 2174, 020162 (2019).
  13. L. M. Martyushev, D. A.Rusova, and K. V. Zvonarev, Phys. Fluids 34, 053112 (2022).
  14. I. V. Kerekelitsa, K. V. Zvonarev, and L. M. Martyushev, AIP Conf. Proceed. 2466, 070007 (2022).
  15. K. V. Zvonarev, D. A.Rusova, and L. M. Martyushev, Phys. Fluids 34, 123114 (2022).
  16. N. A. Vinnichenko, Y. Y. Plaksina, K. M. Baranova, A. V. Pushtaev, and A. V. Uvarov, Environ. Fluid Mech. 18, 1045 (2018).
  17. Y. Rudenko, N. Vinnichenko, Y. Plaksina, A. V. Pushtaev, and A. V. Uvarov, J. Fluid Mech. 944, A35 (2022).
  18. D. J. Tritton, Physical Fluid Dynamics, Van Nostrand Reinhold Co., N.Y. (1977).
  19. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., Course of Theoretical Physics, v. 6, Pergamon Press, Oxford (1987).
  20. G. Karapetsas, O. K. Matar, P. Valluri, and K. Se ane, Langmuir 28, 11433 (2012).
  21. K. Se ane, J. R. Mo at, O. K. Matar, and R. V. Craster, App. Phys. Lett. 93, 074103 (2008).
  22. С. В. Филатов, А. А. Левченко, Л. П. Межов-Деглин, Письма в ЖЭТФ 111(10), 653 (2020).
  23. А. А. Гаврилина, Л. Ю. Бараш, ЖЭТФ 159(2), 359 (2021).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук