Nonuniformly Filled Vortex Rings in Nonlinear Optics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new type of long-lived solitary structures for paraxial optics with two circular polarizations of light in a homogeneous defocusing Kerr medium with an anomalous group velocity dispersion has been revealed numerically in the coupled nonlinear Schrödinger equations. A found hybrid three-dimensional soliton is a vortex ring against the background of a plane wave in one of the components, and the core of the vortex is filled with another component nonuniformly in azimuth angle. The existence of such quasistationary structures with a reduced symmetry in a certain parametric region is due to the saturation of the so-called sausage instability caused by the effective surface tension of a domain wall between two polarizations.

About the authors

V. P Ruban

Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia

Author for correspondence.
Email: ruban@itp.ac.ru

References

  1. Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 1st ed., Academic Press, California, USA (2003).
  2. V.E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Springer-Verlag, Berlin, Heidelberg (1999).
  3. B.A. Malomed, Multidimensional Solitons, AIP Publishing (online), Melville, N. Y. (2022); https://doi.org/10.1063/9780735425118.
  4. F. Baronio, S. Wabnitz, and Yu. Kodama, Phys. Rev. Lett. 116, 173901 (2016).
  5. P.G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonz'alez, The Defocusing Nonlinear Schr¨odinger Equation: From Dark Solitons to Vortices and Vortex Rings, SIAM, Philadelphia (2015).
  6. А.Л. Берхоер, В.Е. Захаров, ЖЭТФ 58, 903 (1970).
  7. T.-L. Ho and V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).
  8. H. Pu and N.P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).
  9. B. P. Anderson, P.C. Haljan, C. E. Wieman, and E.A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).
  10. S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).
  11. G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
  12. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).
  13. P. Ao and S.T. Chui, Phys. Rev. A 58, 4836 (1998).
  14. M. Haelterman and A.P. Sheppard, Phys. Rev. E 49, 3389 (1994).
  15. M. Haelterman and A.P. Sheppard, Phys. Rev. E 49, 4512 (1994).
  16. A.P. Sheppard and M. Haelterman, Opt. Lett. 19, 859 (1994).
  17. Yu. S. Kivhsar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
  18. N. Dror, B.A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602 (2011).
  19. A.H. Carlsson, J.N. Malmberg, D. Anderson, M. Lisak, E.A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).
  20. A. S. Desyatnikov, L. Torner, and Yu. S. Kivshar, Progress in Optics 47, 291 (2005).
  21. В.П. Рубан, Письма в ЖЭТФ 117, 292 (2023).
  22. B. van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).
  23. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).
  24. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).
  25. N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).
  26. H. Kokubo, K. Kasamatsu, and H. Takeuchi, Phys. Rev. A 104, 023312 (2021).
  27. K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).
  28. S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).
  29. T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).
  30. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).
  31. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).
  32. D.K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P.G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A 102, 033320 (2020).
  33. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).
  34. K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).
  35. P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).
  36. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 93, 250406 (2004).
  37. H. Takeuchi, K. Kasamatsu, M. Tsubota, and M. Nitta, Phys. Rev. Lett. 109, 245301 (2012).
  38. M. Nitta, K. Kasamatsu, M. Tsubota, and H. Takeuchi, Phys. Rev. A 85, 053639 (2012).
  39. K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).
  40. В.П. Рубан, Письма в ЖЭТФ 113, 848 (2021).
  41. В.П. Рубан, ЖЭТФ 160, 912 (2021).
  42. K. J.H. Law, P.G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010)
  43. Erratum, Phys. Rev. Lett. 106, 199903 (2011).
  44. M. Pola, J. Stockhofe, P. Schmelcher, and P.G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).
  45. S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).
  46. A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A 101, 013630 (2020).
  47. A. Richaud, V. Penna, and A.L. Fetter, Phys. Rev. A 103, 023311 (2021).
  48. В.П. Рубан, Письма в ЖЭТФ 113, 539 (2021).
  49. В.П. Рубан, Письма в ЖЭТФ 115, 450 (2022).
  50. V.P. Ruban, W. Wang, C. Ticknor, and P.G. Kevrekidis, Phys. Rev. A 105, 013319 (2022).
  51. G.C. Katsimiga, P.G. Kevrekidis, B. Prinari, G. Biondini, and P. Schmelcher, Phys. Rev. A 97, 043623 (2018).
  52. X. Liu, B. Zhou, H. Guo, and M. Bache, Opt. Lett. 40, 3798 (2015).
  53. X. Liu and M. Bache, Opt. Lett. 40, 4257 (2015).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук