Svyazannye sostoyaniya i rasseyanie magnonov na sverkhprovodyashchem vikhre v geterostrukturakh ferromagnetik–sverkhprovodnik

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Изучен магнонный спектр в тонкой гетероструктуре ферромагнетик–сверхпроводник в присутствии сверхпроводящего вихря. Для этого используется гамильтониан типа Боголюбова–де Жена, описывающий магноны в присутствии внешнего магнитного поля и неоднородного профиля намагниченности, создаваемого этим вихрем. Показано, что на вихре образуются связанные состояния магнонов подобно тому, как заряженный центр создает связанные состояния электронов из-за экранированного кулоновского взаимодействия в двумерном электронном газе. Число этих локализованных состояний определяется только материальными параметрами ферромагнитной пленки. Также решена задача рассеяния для плоской падающей спиновой волны и вычислены полное и транспортное сечения рассеяния. Показано, что профиль намагниченности, создаваемый вихрем в пленке кирального ферромагнетика приводит к асимметричному рассеянию магнонов. Обсуждены особенности квантовой задачи рассеяния, соответствующие орбитальному обращению в классическом пределе.

About the authors

D. S Katkov

Институт теоретической физики им. Л.Д.Ландау; Московский физико-технический институт

Черноголовка, Россия; Москва, Россия

C. S Apostolov

Институт теоретической физики им. Л.Д.Ландау; Национальный исследовательский университет Высшая школа экономики

Лаборатория физики конденсированного состояния Москва, Россия; Москва, Россия

I. S Burmistrov

Институт теоретической физики им. Л.Д.Ландау; Национальный исследовательский университет Высшая школа экономики

Email: burmi@itp.ac.ru
Лаборатория физики конденсированного состояния Москва, Россия; Москва, Россия

References

  1. E. I. Blount and C.M. Varma, Electromagnetic effects near the superconductor-to-ferromagnet transition, Phys. Rev. Lett. 42, 1079 (1979).
  2. V.V. Ryazanov, V.A. Oboznov, A. S. Prokofiev, V.V. Bolginov, and A.K. Feofanov, J. Low Temp. Phys. 136, 385 (2004).
  3. I. F. Lyuksyutov and V. L. Pokrovsky, Adv. Phys. 54, 67 (2005).
  4. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
  5. F. S. Bergeret, A.F. Volkov, and K.B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
  6. M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).
  7. C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M. Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy, N. Nagaosa, S. S.P. Parkin, C. Pffeiderer, N. Reyren, A. Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J. Zang, J. Phys. D: Applied Phys. 53, 363001 (2020).
  8. B. G¨obel, I. Mertig, and O.A. Tretiakov, Phys. Rep. 895, 1 (2021).
  9. A.O. Zlotnikov, M. S. Shustin, and A.D. Fedoseev, J. Supercond. Nov. Magn. 34, 3053 (2021).
  10. A.N. Bogdanov and D. Yablonskii, Sov. Phys. JETP 68, 101 (1989).
  11. K.M.D. Hals, M. Schecter, and M. S. Rudner, Phys. Rev. Lett. 117, 017001 (2016).
  12. J. Baumard, J. Cayssol, F. S. Bergeret, and A. Buzdin, Phys. Rev. B 99, 014511 (2019).
  13. S.M. Dahir, A. F. Volkov, and I.M. Eremin, Phys. Rev. Lett. 122, 097001 (2019).
  14. R.M. Menezes, J. F. S. Neto, C.C. de Souza Silva, and M.V. Milo´sevi´c, Phys. Rev. B 100, 014431 (2019).
  15. S.M. Dahir, A. F. Volkov, and I.M. Eremin, Phys. Rev. B 102, 014503 (2020).
  16. E. S. Andriyakhina and I. S. Burmistrov, Phys. Rev. B 103, 174519 (2021).
  17. E. S. Andriyakhina, S. Apostoloff, and I. S. Burmistrov, JETP Lett. 116, 825 (2022).
  18. S. S. Apostoloff, E. S. Andriyakhina, P.A. Vorobyev, O.A. Tretiakov, and I. S. Burmistrov, Phys. Rev. B 107, L220409 (2023).
  19. S. S. Apostoloff, E. S. Andriyakhina, and I. S. Burmistrov, Phys. Rev. B 109, 104406 (2024).
  20. A.P. Petrovi´c, M. Raju, X.Y. Tee, A. Louat, I. Maggio-Aprile, R.M. Menezes, M. J. Wyszy´nski, N.K. Duong, M. Reznikov, Ch. Renner, M.V. Milosevi´c, and C. Panagopoulos, Phys. Rev. Lett. 126, 117205 (2021).
  21. P. Machain, Skyrmion-Vortex Interactions in Chiral-Magnet/Superconducting Hybrid Systems, Ph. D. thesis, Nanyang Technological University, Singapore (2021).
  22. Y. Xie, A. Qian, B. He, Y. Wu, S. Wang, B. Xu, G. Yu, X. Han, and X. Qiu, Phys. Rev. Lett. 133, 166706 (2024).
  23. W. Chen and A.P. Schnyder, Phys. Rev. B 92, 214502 (2015).
  24. G. Yang, P. Stano, J. Klinovaja, and D. Loss, Phys. Rev. B 93, 224505 (2016).
  25. U. G¨ung¨ord¨u, S. Sandhoefner, and A.A. Kovalev, Phys. Rev. B 97, 115136 (2018).
  26. E. Mascot, S. Cocklin, S. Rachel, and D.K. Morr, Phys. Rev. B 100, 184510 (2019).
  27. M. Garnier, A. Mesaros, and P. Simon, Commun. Phys. 2, 126 (2019).
  28. U. G¨ung¨ord¨u and A.A. Kovalev, J. Appl. Phys. 132, 041101 (2022).
  29. S. Rex, I.V. Gornyi, and A.D. Mirlin, Phys. Rev. B 100, 064504 (2019).
  30. S. Rex, I.V. Gornyi, and A.D. Mirlin, Phys. Rev. B 102, 224501 (2020).
  31. J. Nothhelfer, S.A. D´iaz, S. Kessler, T. Meng, M. Rizzi, K.M.D. Hals, and K. Everschor-Sitte, Phys. Rev. B 105, 224509 (2022).
  32. S.T. Konakanchi, J. I. V¨ayrynen, Y.P. Chen, P. Upadhyaya, and L.P. Rokhinson, Phys. Rev. Res. 5, 033109 (2023).
  33. A. I. Akhiezer, V.G. Bar’yakhtar, and S.V. Peletminskii, Spin Waves, North-Holland Pub. Co., Amsterdam (1968).
  34. S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A.N. Slavin, Yu.N. Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Yu.P. Sharaevsky, Yu.A. Filimonov, Yu.V. Khivintsev, S. L. Vysotsky, V.K. Sakharov, and E. S. Pavlov, Phys.-Uspekhi 58, 1002 (2015).
  35. A. Barman, G. Gubbiotti, S. Ladak et al. (Collaboration), J. Phys.: Condens. Matter 33, 413001 (2021).
  36. A. Brataas, B. van Wees, O. Klein, G. de Loubens, and M. Viret, Phys. Rep. 885, 1 (2020).
  37. C. Davies, A. Francis, A. Sadovnikov, S. Chertopalov, M. Bryan, S. Grishin, D. Allwood, Y. Sharaevskii, S. Nikitov, and V. Kruglyak, Phys. Rev. B 92, 020408 (2015).
  38. H.-B. Braun, Phys. Rev. B 50, 16485 (1994).
  39. R. Hertel, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 93, 257202 (2004).
  40. S. J. H¨am¨al¨ainen, M. Madami, H. Qin, G. Gubbiotti, and S. van Dijken, Nat. Commun. 9, 4853 (2018).
  41. V. Laliena, A. Athanasopoulos, and J. Campo, Phys. Rev. B 105, 214429 (2022).
  42. J. Iwasaki, A. J. Beekman, and N. Nagaosa, Phys. Rev. B 89, 064412 (2014).
  43. C. Sch¨utte and M. Garst, Phys. Rev. B 90, 094423 (2014).
  44. D.N. Aristov, S. S. Kravchenko, and A.O. Sorokin, JETP Lett. 102, 511 (2015).
  45. T.K. Ng and C.M. Varma, Phys. Rev. B 58, 11624 (1998).
  46. V. Braude and E.B. Sonin, Phys. Rev. Lett. 93, 117001 (2004).
  47. I.A. Golovchanskiy, N.N. Abramov, V. S. Stolyarov, V.V. Bolginov, V.V. Ryazanov, A.A. Golubov, and A.V. Ustinov, Adv. Funct. Mater. 28, 1802375 (2018).
  48. I.A. Golovchanskiy, N.N. Abramov, V. S. Stolyarov, V.V. Bolginov, V.V. Ryazanov, A.A. Golubov, and A.V. Ustinov, J. Appl. Phys. 127, 093903 (2020).
  49. I.A. Golovchanskiy, N.N. Abramov, V. S. Stolyarov, V. I. Chichkov, M. Silaev, I.V. Shchetinin, A.A. Golubov, V.V. Ryazanov, A.V. Ustinov, and M.Yu. Kupriyanov, Phys. Rev. Applied 14, 024086 (2020).
  50. T. Yu and Gerrit E.W. Bauer, Phys. Rev. Lett. 129, 117201 (2022).
  51. M. Silaev, Phys. Rev. Applied 18, L061004 (2022).
  52. I.A. Golovchanskiy, N.N. Abramov, O.V. Emelyanova, I.V. Shchetinin, V.V. Ryazanov, A.A. Golubov, and V. S. Stolyarov, Phys. Rev. Applied 19, 034025 (2023)
  53. M. Borst, P.H. Vree, A. Lowther, A. Teepe, S. Kurdi, I. Bertelli, B.G. Simon, Y.M. Blanter, and T. van der Sar, Science 382, 430 (2023).
  54. J. Kharlan, K. Sobucki, K. Szulc, S. Memarzadeh, and J.W. Klos, Phys. Rev. Applied 21, 064007 (2024).
  55. O.V. Dobrovolskiy, R. Sachser, T. Br¨acher, T. B¨ottcher, V. Kruglyak, R.V. Vovk, V.A. Shklovskij, M. Huth, B. Hillebrands, and A.V. Chumak, Nat. Phys. 15, 477 (2019).
  56. B. Niedzielski, C. L. Jia, and J. Berakdar, Phys. Rev. Applied 19, 024073 (2023).
  57. I.V. Bobkova, A.M. Bobkov, A. Kamra, and W. Belzig, Commun. Mater. 3, 95 (2022).
  58. J. Pearl, Appl. Phys. Lett. 5, 65 (1964).
  59. F. Stern and W.E. Howard, Phys. Rev. 163, 816 (1967).
  60. M.A. Kuznetsov, K.R. Mukhamatchin, and A.A. Fraerman, Phys. Rev. B 107, 184428 (2023).
  61. A.A. Abrikosov, Fundamentals of the Theory of Metals, North-Holland, Amsterdam (1988).
  62. G. Carneiro and E.H. Brandt, Phys. Rev. B 61, 6370 (2000).
  63. C. Tanguy, arXiv:cond-mat/0106184.
  64. M. E. Portnoi and I. Galbraith, Solid State Commun. 103, 325 (1997).
  65. D.G.W. Parfitt and M. E. Portnoi, Exactly-solvable problems for two-dimensional excitons, in Proceedings of the XI Regional Conference, Tehran, Iran, 3-6 May 2004: Mathematical Physics 52 (2005); https://doi.org/10.1142/9789812701862_0014.
  66. A. J. Makowski, Phys. Rev. A 83, 022104 (2011).
  67. A. J. Makowski, Phys. Rev. A 84, 022108 (2011).
  68. V. Galitski, B. Karnakov, V. Kogan, and V. Galitski Jr., Exploring quantum mechanics: A collection of 700+ solved problems for students, lecturers, and researchers, Oxford University Press, London (2013).
  69. Q.-G. Lin, Am. J. Phys. 65, 1007 (1997).
  70. G. L. Kotkin and V.G. Serbo, Collections of problems in classical mechanics, Pergamon Press, N.Y. (1971).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук