Electronic and Magnetic Properties of the ε-Fe Phase at High Pressures up to 241 GPa in the Temperature Range of 4–300 K

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The magnetic and electronic states of iron in the hexagonal close-packed ε-Fe phase have been studied by synchrotron Mössbauer spectroscopy on Fe-57 nuclei (nuclear forward scattering method) at pressures of  @  GPa in the temperature range of 4–300 K in external magnetic fields up to 5 T. It has been found that Fe atoms are in a nonmagnetic state in the entire studied P–T region. Theoretically implied magnetic instability and quantum spin fluctuations, which can be stabilized by magnetic perturbation (e.g., external magnetic field), have not been confirmed by our measurements of nuclear forward scattering spectra in an external magnetic field. It has been established that the isomer shift IS(P) has a nonlinear pressure dependence and reaches a colossal value of about –0.8 mm/s at a maximum pressure of 241 GPa, indicating a very high electron density on the Fe nucleus. A sharp change in the electron density on the Fe nucleus at temperatures of 100–200 K indicates a phase transition with a change in the electronic structure, which can be due to an abrupt increase in the conductivity or even to the appearance of superconductivity.

Sobre autores

A. Gavrilyuk

Institute for Nuclear Research, Russian Academy of Sciences; Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences; Immanuel Kant Baltic Federal University

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 119333, Moscow, Russia; 236041, Kaliningrad, Russia

V. Struzhkin

Center for High Pressure Science and Technology Advanced Research (HPSTAR)

Email: gavriliuk@mail.ru
Pudong, 201203, Shanghai, People’s Republic of China

S. Aksenov

Institute for Nuclear Research, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia

A. Mironovich

Institute for Nuclear Research, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia

I. Troyan

Institute for Nuclear Research, Russian Academy of Sciences; Immanuel Kant Baltic Federal University

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 236041, Kaliningrad, Russia

A. Ivanova

Institute for Nuclear Research, Russian Academy of Sciences ;Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 119333, Moscow, Russia

I. Lyubutin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: gavriliuk@mail.ru
119333, Moscow, Russia

Bibliografia

  1. I. S. Lyubutin and A. G. Gavriliuk, Phys.-Uspekhi 52, 989 (2009).
  2. S. G. Ovchinnikov, JETP Lett. 94, 192 (2011).
  3. S. G. Ovchinnikov, T. M. Ovchinnikova, P. G. Dyad'kov, V. V. Plotkin, and K. D. Litasov, JETP Lett. 96, 129 (2012).
  4. S. N. Aksenov, A. A. Mironovich, I. S. Lyubutin, A. G. Ivanova, I. A. Troyan, R. A. Sadykov, Siddharth S. Saxena (Montu), and A. G. Gavriliuk, JETP Lett. 114, 742 (2021).
  5. R. Boehler, Rev. Geophys. 38, 221 (2000).
  6. D. N. Sagatova, P. N. Gavryushkin, N. E. Sagatov, I. V. Medrish, and K. D. Litasov, JETP Lett. 111, 145 (2020).
  7. A. G. Kvashnin, I. A. Kruglov, D. V. Semenok, and A. R. Oganov, J. Phys. Chem. C 122, 4731 (2018).
  8. A. G. Gavriliuk, V. V. Struzhkin, S. N. Aksenov, A. G. Ivanova, A. A. Mironovich, I. A. Troyan, and I. S. Lyubutin, JETP Lett. 116 (2022), в печати.
  9. I. A. Troyan, D. V. Semenok, A. G. Ivanova, A. G. Kvashnin, D. Zhou, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. S. Lyubutin, and A. R. Oganov, Phys.-Uspekhi 65, 748 (2022).
  10. K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, and K. Amaya, Nature 412, 316 (2001).
  11. E. R. Jette and F. Foote, J. Chem. Phys. 3, 605 (1935).
  12. Z. S. Basinski, W. Hume-Rothery, and A. L. Sutton, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 229, 459 (1955).
  13. R. W. G. Wycko, Crystal Structures, 2 ed., Interscience Publishers, N.Y. (1963).
  14. I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011).
  15. J. B. Goodenough, Magnetism and the chemical bond, Interscience publishers, a division of John Wiley & Sons, N.Y.-London (1963).
  16. V. Y. Irkhin, M. I. Katsnelson, and A. V. Tre lov, J. Phys.: Condens. Matter 5, 8763 (1993).
  17. N. V. Barge and R. Boehler, High Pressure Research 6, 133 (1990).
  18. R. Boehler, N. von Bargen, and A. Chopelas, J. Geophys. Res. 95, 21731 (1990).
  19. H.-K. Mao, W. A. Bassett, and T. Takahashi, J. Appl. Phys. 38, 272 (1967).
  20. H. K. Mao, Y. Wu, L. C. Chen, J. F. Shu, and A. P. Jephcoat, J. Geophys. Res. 95, 21737 (1990).
  21. G. Cort, R. D. Taylor, and J. O. Willis, J. Appl. Phys. 53, 2064 (1982).
  22. R. D. Taylor, M. P. Pasternak, and R. Jeanloz, J. Appl. Phys. 69, 6126 (1991).
  23. G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Phys. Rev. B 60, 791 (1999).
  24. G. Steinle-Neumann, R. E. Cohen, and L. Stixrude, J. Phys. Condens. Matter 16, S1109 (2004).
  25. A. B. Papandrew, M. S. Lucas, R. Stevens, I. Halevy, B. Fultz, M. Y. Hu, P. Chow, R. E. Cohen, and M. Somayazulu, Phys. Rev. Lett. 97, 087202 (2006).
  26. R. Liz'arraga, Nordstr¨om, O. Eriksson, and J. Wills, Phys. Rev. B 78, 064410 (2008).
  27. V. Thakor, J. B. Staunton, J. Poulter, S. Ostanin, B. Ginatempo, and E. Bruno, Phys. Rev. B 67, 180405(R) (2003).
  28. I. I. Mazin, D. A. Papaconstantopoulos, and M. J. Mehl, Phys. Rev. B 65, 100511(R) (2002).
  29. K. Glazyrin, L. V. Pourovskii, L. Dubrovinsky et al. (Collaboration), Phys. Rev. Lett. 110, 117206 (2013).
  30. A. G. Gavriliuk, A. A. Mironovich, and V. V. Struzhkin, Rev. Sci. Instrum. 80, 043906 (2009).
  31. Y. Akahama and H. Kawamura, J. Appl. Phys. 100, 043516 (2006).
  32. Y. V. Shvyd'ko, Phys. Rev. B 59, 9132 (1999).
  33. R.Ru¨ er, C. R. Physique 9, 595 (2008).
  34. Y. V. Shvyd'ko, Hyper ne Interactions 125, 173 (2000).
  35. R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961).
  36. A. A. Maradudin, P. A. Flinn, and S. L.Ruby, Phys. Rev. 126, 9 (1962).
  37. L. R. Walker, G. K. Wertheim, and V.Jaccarino, Phys. Rev. Lett. 6, 98 (1961).
  38. J. B. Goodenough, Phys. Rev. 120, 67 (1960).
  39. J. B. Goodenough, A. Wold, and R. J. Arnott, J. Appl. Phys. 31, S342 (1960).
  40. A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, Phys. Rev. B 67, 153106 (2003).
  41. G. C. Fletcher and R. P. Addis, J. Phys. F: Met. Phys. 4, 1951 (1974).
  42. R. E. Cohen and S. Mukherjee, Phys. Earth Planet.Inter. 143-144, 445 (2004).
  43. J. Goniakowski and M. Podg'orny, Phys. Rev. B 44, 12348 (1991).
  44. H. Ohno and M. Mekata, J. Phys. Soc. Jpn. 31, 102 (1971).
  45. H. Ohno, J. Phys. Soc. Jpn. 31, 92 (1971).
  46. G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, PNAS 101, 33 (2004).
  47. L. Stixrude, R. E. Cohen, and D. J. Singh, Phys. Rev. B 50, 6442 (1994).
  48. I. Troyan, A. Gavriliuk, R.Ru¨ er, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A. P. Drozdov, and M. I. Eremets, Science 351, 1303 (2016).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023