Electronic and Magnetic Properties of the ε-Fe Phase at High Pressures up to 241 GPa in the Temperature Range of 4–300 K
- Authors: Gavrilyuk A.G1,2,3, Struzhkin V.V4, Aksenov S.N1, Mironovich A.A1, Troyan I.A1,3, Ivanova A.G1,2, Lyubutin I.S2
-
Affiliations:
- Institute for Nuclear Research, Russian Academy of Sciences
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences
- Immanuel Kant Baltic Federal University
- Center for High Pressure Science and Technology Advanced Research (HPSTAR)
- Issue: Vol 117, No 1-2 (1) (2023)
- Pages: 132-144
- Section: Articles
- URL: https://rjonco.com/0370-274X/article/view/663629
- DOI: https://doi.org/10.31857/S1234567823020088
- EDN: https://elibrary.ru/OESDWP
- ID: 663629
Cite item
Abstract
The magnetic and electronic states of iron in the hexagonal close-packed ε-Fe phase have been studied by synchrotron Mössbauer spectroscopy on Fe-57 nuclei (nuclear forward scattering method) at pressures of @ GPa in the temperature range of 4–300 K in external magnetic fields up to 5 T. It has been found that Fe atoms are in a nonmagnetic state in the entire studied P–T region. Theoretically implied magnetic instability and quantum spin fluctuations, which can be stabilized by magnetic perturbation (e.g., external magnetic field), have not been confirmed by our measurements of nuclear forward scattering spectra in an external magnetic field. It has been established that the isomer shift IS(P) has a nonlinear pressure dependence and reaches a colossal value of about –0.8 mm/s at a maximum pressure of 241 GPa, indicating a very high electron density on the Fe nucleus. A sharp change in the electron density on the Fe nucleus at temperatures of 100–200 K indicates a phase transition with a change in the electronic structure, which can be due to an abrupt increase in the conductivity or even to the appearance of superconductivity.
About the authors
A. G Gavrilyuk
Institute for Nuclear Research, Russian Academy of Sciences; Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences; Immanuel Kant Baltic Federal University
Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 119333, Moscow, Russia; 236041, Kaliningrad, Russia
V. V Struzhkin
Center for High Pressure Science and Technology Advanced Research (HPSTAR)
Email: gavriliuk@mail.ru
Pudong, 201203, Shanghai, People’s Republic of China
S. N Aksenov
Institute for Nuclear Research, Russian Academy of Sciences
Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia
A. A Mironovich
Institute for Nuclear Research, Russian Academy of Sciences
Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia
I. A Troyan
Institute for Nuclear Research, Russian Academy of Sciences; Immanuel Kant Baltic Federal University
Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 236041, Kaliningrad, Russia
A. G Ivanova
Institute for Nuclear Research, Russian Academy of Sciences ;Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences
Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 119333, Moscow, Russia
I. S Lyubutin
Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences
Author for correspondence.
Email: gavriliuk@mail.ru
119333, Moscow, Russia
References
- I. S. Lyubutin and A. G. Gavriliuk, Phys.-Uspekhi 52, 989 (2009).
- S. G. Ovchinnikov, JETP Lett. 94, 192 (2011).
- S. G. Ovchinnikov, T. M. Ovchinnikova, P. G. Dyad'kov, V. V. Plotkin, and K. D. Litasov, JETP Lett. 96, 129 (2012).
- S. N. Aksenov, A. A. Mironovich, I. S. Lyubutin, A. G. Ivanova, I. A. Troyan, R. A. Sadykov, Siddharth S. Saxena (Montu), and A. G. Gavriliuk, JETP Lett. 114, 742 (2021).
- R. Boehler, Rev. Geophys. 38, 221 (2000).
- D. N. Sagatova, P. N. Gavryushkin, N. E. Sagatov, I. V. Medrish, and K. D. Litasov, JETP Lett. 111, 145 (2020).
- A. G. Kvashnin, I. A. Kruglov, D. V. Semenok, and A. R. Oganov, J. Phys. Chem. C 122, 4731 (2018).
- A. G. Gavriliuk, V. V. Struzhkin, S. N. Aksenov, A. G. Ivanova, A. A. Mironovich, I. A. Troyan, and I. S. Lyubutin, JETP Lett. 116 (2022), в печати.
- I. A. Troyan, D. V. Semenok, A. G. Ivanova, A. G. Kvashnin, D. Zhou, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. S. Lyubutin, and A. R. Oganov, Phys.-Uspekhi 65, 748 (2022).
- K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, and K. Amaya, Nature 412, 316 (2001).
- E. R. Jette and F. Foote, J. Chem. Phys. 3, 605 (1935).
- Z. S. Basinski, W. Hume-Rothery, and A. L. Sutton, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 229, 459 (1955).
- R. W. G. Wycko, Crystal Structures, 2 ed., Interscience Publishers, N.Y. (1963).
- I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011).
- J. B. Goodenough, Magnetism and the chemical bond, Interscience publishers, a division of John Wiley & Sons, N.Y.-London (1963).
- V. Y. Irkhin, M. I. Katsnelson, and A. V. Tre lov, J. Phys.: Condens. Matter 5, 8763 (1993).
- N. V. Barge and R. Boehler, High Pressure Research 6, 133 (1990).
- R. Boehler, N. von Bargen, and A. Chopelas, J. Geophys. Res. 95, 21731 (1990).
- H.-K. Mao, W. A. Bassett, and T. Takahashi, J. Appl. Phys. 38, 272 (1967).
- H. K. Mao, Y. Wu, L. C. Chen, J. F. Shu, and A. P. Jephcoat, J. Geophys. Res. 95, 21737 (1990).
- G. Cort, R. D. Taylor, and J. O. Willis, J. Appl. Phys. 53, 2064 (1982).
- R. D. Taylor, M. P. Pasternak, and R. Jeanloz, J. Appl. Phys. 69, 6126 (1991).
- G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Phys. Rev. B 60, 791 (1999).
- G. Steinle-Neumann, R. E. Cohen, and L. Stixrude, J. Phys. Condens. Matter 16, S1109 (2004).
- A. B. Papandrew, M. S. Lucas, R. Stevens, I. Halevy, B. Fultz, M. Y. Hu, P. Chow, R. E. Cohen, and M. Somayazulu, Phys. Rev. Lett. 97, 087202 (2006).
- R. Liz'arraga, Nordstr¨om, O. Eriksson, and J. Wills, Phys. Rev. B 78, 064410 (2008).
- V. Thakor, J. B. Staunton, J. Poulter, S. Ostanin, B. Ginatempo, and E. Bruno, Phys. Rev. B 67, 180405(R) (2003).
- I. I. Mazin, D. A. Papaconstantopoulos, and M. J. Mehl, Phys. Rev. B 65, 100511(R) (2002).
- K. Glazyrin, L. V. Pourovskii, L. Dubrovinsky et al. (Collaboration), Phys. Rev. Lett. 110, 117206 (2013).
- A. G. Gavriliuk, A. A. Mironovich, and V. V. Struzhkin, Rev. Sci. Instrum. 80, 043906 (2009).
- Y. Akahama and H. Kawamura, J. Appl. Phys. 100, 043516 (2006).
- Y. V. Shvyd'ko, Phys. Rev. B 59, 9132 (1999).
- R.Ru¨ er, C. R. Physique 9, 595 (2008).
- Y. V. Shvyd'ko, Hyper ne Interactions 125, 173 (2000).
- R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961).
- A. A. Maradudin, P. A. Flinn, and S. L.Ruby, Phys. Rev. 126, 9 (1962).
- L. R. Walker, G. K. Wertheim, and V.Jaccarino, Phys. Rev. Lett. 6, 98 (1961).
- J. B. Goodenough, Phys. Rev. 120, 67 (1960).
- J. B. Goodenough, A. Wold, and R. J. Arnott, J. Appl. Phys. 31, S342 (1960).
- A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, Phys. Rev. B 67, 153106 (2003).
- G. C. Fletcher and R. P. Addis, J. Phys. F: Met. Phys. 4, 1951 (1974).
- R. E. Cohen and S. Mukherjee, Phys. Earth Planet.Inter. 143-144, 445 (2004).
- J. Goniakowski and M. Podg'orny, Phys. Rev. B 44, 12348 (1991).
- H. Ohno and M. Mekata, J. Phys. Soc. Jpn. 31, 102 (1971).
- H. Ohno, J. Phys. Soc. Jpn. 31, 92 (1971).
- G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, PNAS 101, 33 (2004).
- L. Stixrude, R. E. Cohen, and D. J. Singh, Phys. Rev. B 50, 6442 (1994).
- I. Troyan, A. Gavriliuk, R.Ru¨ er, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A. P. Drozdov, and M. I. Eremets, Science 351, 1303 (2016).
Supplementary files
