Magnon Topological Transition in Skyrmion Crystal

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the magnon spectrum in skyrmion crystal formed in thin ferromagnetic films with Dzyaloshinskii–Moriya interaction in presence of magnetic field. Focusing on two low-lying observable magnon modes and employing stereographic projection method, we develop a theory demonstrating a topological transition in the spectrum. Upon the increase in magnetic field, the gap between two magnon bands closes, with the ensuing change in the topological character of both bands. This phenomenon of gap closing, if confirmed in magnetic resonance experiments, may deserve further investigation by thermal Hall conductivity experiments.

Sobre autores

V. Timofeev

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

Email: victor.timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

Yu. Baramygina

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

Email: victor.timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

D. Aristov

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

Autor responsável pela correspondência
Email: victor.timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

Bibliografia

  1. H. Vakili, J.-W. Xu, W. Zhou, M. N. Sakib, M. G. Morshed, T. Hartnett, Y. Quessab, K. Litzius, C. T. Ma, S. Ganguly, M. R. Stan, P. V. Balachandran, G. S. D. Beach, S. J. Poon, A. D. Kent, and A. W. Ghosh, J. Appl. Phys. 130, 070908 (2021).
  2. M.-K. Lee and M. Mochizuki, Phys. Rev. Appl. 18, 014074 (2022).
  3. A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 1 (2017).
  4. K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kl¨aui, J. Appl. Phys. 124, 240901 (2018).
  5. N. Nagaosa and Y. Tokura, Nature Nanotech. 8, 899 (2013).
  6. M. Garst, J. Waizner, and D. Grundler, J. Phys. D: Appl. Phys. 50, 293002 (2017).
  7. A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).
  8. A. N. Bogdanov and D. Yablonskii, ZhETF 95, 178 (1989).
  9. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).
  10. S. Mu¨hlbauer, B. Binz, F. Jonietz, C. P eiderer, A. Rosch, A. Neubauer, R. Georgii, and P. B¨oni, Science 323, 915 (2009).
  11. C. Schu¨tte and M. Garst, Phys. Rev. B 90, 094423 (2014).
  12. S.-Z. Lin, C. D. Batista, and A. Saxena, Phys. Rev. B 89, 024415 (2014).
  13. A. Rold'an-Molina, A. S. Nunez, and J. Fern'andez-Rossier, New J. Phys. 18, 045015 (2016).
  14. V. E. Timofeev and D. N. Aristov, Phys. Rev. B 105, 024422 (2022).
  15. O. Petrova and O. Tchernyshyov, Phys. Rev. B 84, 214433 (2011).
  16. V. E. Timofeev and D. N. Aristov, JETP Lett. 118, 455 (2023).
  17. S. A. D'ıaz, T. Hirosawa, J. Klinovaja, and D. Loss, Physical Review Research 2, 013231 (2020).
  18. K. Mæland and A. Sudbø, Phys. Rev. Res. 4, L032025 (2022).
  19. K. A. van Hoogdalem, Y. Tserkovnyak, and D. Loss, Phys. Rev. B 87, 024402 (2013).
  20. R. Matsumoto, R. Shindou, and S. Murakami, Phys. Rev. B 89, 054420 (2014).
  21. W. D¨oring, Z. Naturforsch. A 3, 373 (1948).
  22. V. E. Timofeev, A. O. Sorokin, and D. N. Aristov, JETP Lett. 109, 207 (2019).
  23. V. E. Timofeev, A. O. Sorokin, and D. N. Aristov, Phys. Rev. B 103, 094402 (2021).
  24. V. E. Timofeev and D. N. Aristov, JETP Lett. 117, 676 (2023).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023