Генерация гармоник высокого порядка вблизи низкочастотного края плато при нелинейном распространении фемтосекундного лазерного излучения ближнего ик диапазона с длиной волны 1.24 мкм в плотной струе аргона

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Реализована генерация гармоник высокого порядка (15-25) в вакуумной ультрафиолетовой области спектра (83-50 нм) при воздействии сфокусированного ( NA = 0 . 033) фемтосекундного лазерного излучения ближнего ИК диапазона ( λ = 1 . 24 мкм) на плотную газовую струю при вакуумной интенсивности ∼7 . 5 · 1014 Вт/см2. Экспериментально показано, что использование такой фокусировки с высокой числовой апертурой требует использования высоких (до 10 бар) давлений для оптимизации фазового согласования. При этом использование плотной газовой струи приводит к заметному проявлению нелинейных эффектов распространения генерирующего излучения, влияющих на процесс генерации путем изменения условий фазового согласования. Кроме того, показано, что пре-чирпирование генерирующего импульса позволяет скомпенсировть чирп, возникающий вследствие фазовой самомодуляции, и увеличить эффективность генерации гармоник вследствие нелинейной компрессии генерирующего импульса. Данный подход позволил сгенерировать излучение 17-й гармоники (73 нм) с энергией в импульсе на уровне 2 пДж и соответствующей эффективностью генерации 5 . 4 · 10-9, что, согласно проведенным оценкам, позволяет использовать такое излучение для одноимпульсной безмасочной фотолитографии вэкстремальном ультрафиолетовом диапазоне.

Об авторах

Б. В. Румянцев

МГУ имени М. В. Ломоносова

Email: rumjancev.bv15@physics.msu.ru
119991, Москва, Россия

А. В. Пушкин

МГУ имени М. В. Ломоносова

Email: rumjancev.bv15@physics.msu.ru
119991, Москва, Россия

Ф. В. Потёмкин

МГУ имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: rumjancev.bv15@physics.msu.ru
119991, Москва, Россия

Список литературы

  1. E. Appi, C.C. Papadopoulou, J. L. Mapa et al. (Collaboration), Sci. Rep. 10(1), 6867 (2020).
  2. J. Pupeikis, P.-A. Chevreuil, N. Bigler, L. Gallmann, C.R. Phillips, and U. Keller, Optica 7(2), 168 (2020).
  3. M.Y. Ryabikin, M.Y. Emelin, and V.V. Strelkov, Uspekhi Fizicheskikh Nauk 193(4), 382 (2023).
  4. A. Andreev, S.Y. Stremoukhov, and O. Shoutova, Laser Phys. 30(10), 105402 (2020).
  5. B. Mahieu, S. Stremoukhov, D. Gauthier, C. Spezzani, C. Alves, B. Vodungbo, P. Zeitoun, V. Malka, G. De Ninno, and G. Lambert, Phys. Rev. A 97(4), 043857 (2018).
  6. Б. В. Румянцев, А.В. Пушкин, Д. З. Сулейманова, Н.А. Жидовцев, Ф.В. Потемкин, 117(8), 571 (2023).
  7. J. Zhang, X.-F. Pan, C.-L. Xia, H. Du, T.-T. Xu, and J. Guo, Laser Phys. Lett. 13(7), 075302 (2016).
  8. I. Babushkin, A. Demircan, U. Morgner, and A. Savel'ev, Phys. Rev. A 106(1), 013115 (2022).
  9. S. Li, Y. Tang, L. Ortmann, B.K. Talbert, C. I. Blaga, Y.H. Lai, Z.Wang, Y. Cheng, F. Yang, A. S. Landsman, P. Agostini, L. F. DiMauro, Nat. Commun. 14(1), 2603 (2023).
  10. C. Heyl, C. Arnold, A. Couairon, and A. L'Huillier, Journal of Physics B: Atomic, Molecular and Optical Physics 50(1), 013001 (2016).
  11. M. Gaponenko, F. Labaye, V. J. Wittwer, C. Paradis, N. Modsching, L. Merceron, A. Diebold, F. Emaury, I. J. Graumann, C.R. Phillips, C. J. Saraceno, C. Kr¨ankel, U. Keller, and T. S¨udmeyer, Nonlinear Optics. Optica Publishing Group.Waikoloa, Hawaii (2017), NTh3A-1.
  12. V.V. Strelkov, V.T. Platonenko, A.F. Sterzhantov, and M.Y. Ryabikin, Phys.-Uspekhi 59(5), 425 (2016).
  13. T. Popmintchev, M.-C. Chen, D. Popmintchev et al. (Collaboration), Science 336(6086), 1287 (2012).
  14. E. Migal, A. Pushkin, B. Bravy, V. Gordienko, N. Minaev, A. Sirotkin, and F. Potemkin, Opt. Lett. 44(10), 2550 (2019).
  15. Б. В. Румянцев, К.Е. Михеев, А.В. Пушкин, Е.А. Мигаль, С.Ю. Стремоухов, Ф.В. Потемкин, Письма в ЖЭТФ 115(7), 431 (2022).
  16. Б.В. Румянцев, А.В. Пушкин, К.Е. Михеев, Ф.В. Потемкин, Письма в ЖЭТФ 116(10), 659 (2022).
  17. E. Migal, S.Y. Stremoukhov, and F. Potemkin, Phys. Rev. A 101(2), 021401 (2020).
  18. E. Migal, F. Potemkin, and V. Gordienko, Laser Phys. Lett. 16(4), 045401 (2019).
  19. C. Jin, A.-T. Le, and C. Lin, Phys. Rev. A 83(2), 023411 (2011).
  20. P.-C. Li and S.-I. Chu, Phys. Rev. A 88(5), 053415 (2013).
  21. V. Cardin, B. Schmidt, N. Thir'e, S. Beaulieu, V. Wanie, M. Negro, C. Vozzi, V. Tosa, and F. L'egar'e, Journal of Physics B: Atomic, Molecular and Optical Physics 51(17), 174004 (2018).
  22. B. Major, M. Kretschmar, O. Ghafur, A. Hoffmann, K. Kovacs, K. Varj'u, B. Senfftleben, J. T¨ummler, I.Will, T. Nagy, D. Rupp, M. J. J. Vrakking, V. Tosa, and B. Sch¨utte, Journal of Physics: Photonics 2(3), 034002 (2020).
  23. R.W. Boyd, Nonlinear optics, Academic press, N.Y. (2020).
  24. R. Weissenbilder, S. Carlstr¨om, L. Rego, C. Guo, C. Heyl, P. Smorenburg, E. Constant, C. Arnold, and A. L'huillier, Nat. Rev. Phys. 4(11), 713 (2022).
  25. В.П. Кандидов, С.А. Шленов, О. Г. Косарева, Квантовая электроника 39(3), 205 (2009).
  26. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20(1), 73 (1995).
  27. J. Rothhardt, M. Krebs, S. H¨adrich, S. Demmler, J. Limpert, and A. T¨unnermann, New J. Phys. 16(3), 033022 (2014).
  28. R.R. Alfano, Sci. Am. 295(6), 86 (2006).
  29. H. J. Levinson, Jpn. J. Appl. Phys. 61.SD, SD0803 (2022).
  30. C. Wagner, N. Harned, P. Kuerz, M. Lowisch, H. Meiling, D. Ockwell, R. Peeters, K. van Ingen-Schenau, E. van Setten, J. Stoeldraijer, and B. Thuering, Extreme Ultraviolet (EUV) Lithography 7636, 512 (2010).
  31. M. van de Kerkhof, T. van Empel, M. Lercel, C. Smeets, F. van de Wetering, A. Nikipelov, C. Cloin, A. Yakunin, and V. Banine, Extreme Ultraviolet (EUV) Lithography X 10957, 191 (2019).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023