Tilt and Anisotropy of the Dirac Spectrum Caused by the Overlapping of Bloch Functions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It has been shown that the overlapping of bands belonging to equivalent representation of the symmetry group is possible in systems with Dirac points appearing at the crossing of these bands. This overlapping results in the tilt and additional anisotropy of the Dirac spectrum, as well as in the renormalization of the velocity. At the same time, overlapping does not violate the general conditions of existence of the stable band crossing point. The effective Dirac Hamiltonian in the presence of band overlapping is pseudo-Hermitian and corresponds to the effective action of a massless spinor field in the curved spacetime.

作者简介

Z. Alisultanov

Abrikosov International Center for Theoretical Physics, Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow region, Russia; Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, 367015, Makhachkala, Russia

Email: zaur0102@gmail.com

N. Demirov

Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia

编辑信件的主要联系方式.
Email: zaur0102@gmail.com

参考

  1. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
  2. P. A. Dirac, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 117, 610 (1928).
  3. H. Weyl, Proc. Natl. Acad. Sci. USA 15(4), 323 (1929).
  4. S. Murakami, New J. Phys. 9(9), 356 (2007).
  5. S. Murakami, S. Iso, Y. Avishai, M. Onoda, and N. Nagaosa, Phys. Rev. B 76, 205304 (2007).
  6. M. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge University Press, Cambridge (2012).
  7. E. Kogan and V. U. Nazarov, Phys. Rev. B 85, 115418 (2012).
  8. B. Bradlyn, J. Cano, Z. Wang, M. Vergniory, C. Felser, R. Cava, and B. A. Bernevig, Science 353, aaf5037 (2016).
  9. A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527(7579), 495 (2015).
  10. B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Phys. Rev. Lett. 116, 186402 (2016).
  11. З. З. Алисултанов, ЖЭТФ 152(5), 986 (2017).
  12. З. З. Алисултанов, Письма в ЖЭТФ 107(4), 260 (2018).
  13. C. Herring, Phys. Rev. 52, 365 (1937).
  14. E. Antoncık and P. T. Landsberg, Proc. Phys. Soc. 82, 337342 (1963).
  15. V. Halpern, J. Phys. Chem. Solids 24, 14951502 (1963).
  16. N. Bernstein, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 66, 075212 (2002).
  17. W. A. Harrison and S. Ciraci, Phys. Rev. B 10, 1516 (1974).
  18. J. Tejeda and N. J. Shevchik, Phys. Rev. B 13, 2548 (1976).
  19. T. B. Boykin, P. Sarangapani, and G. Klimeck, J. Appl. Phys. 125, 144302 (2019).
  20. C. Herring, Phys. Rev. 52, 361 (1937).
  21. C. Kittel, Quantum Theory of Solids, Wiley, N.Y. (1963).
  22. A. Mostafazadeh, J. Math. Phys. 43, 205214 (2002).
  23. A. Mostafazadeh, J. Math. Phys. 43, 28142816 (2002).
  24. A. Mostafazadeh, J. Math. Phys. 43, 39443951 (2002).
  25. Z. Z. Alisultanov and E. G. Idrisov, Phys. Rev. B 107, 085135 (2023).
  26. J. Nissinen and G. E. Volovik, JETP Lett. 105, 442 (2017).
  27. J. Nissinen and G. E. Volovik, JETP 127, 948957 (2018).
  28. G. E. Volovik, Black hole and Hawking radiation by type-II Weyl fermions, JETP Lett. 104, 645 (2016), arXiv:1610.00521
  29. Y. Kedem, E. J. Bergholtz, and F. Wilczek, Phys. Rev. Research 2, 043285 (2020).
  30. I. Proskurin, M. Ogata, and Y. Suzumura, Phys. Rev. B 91, 195413 (2015).
  31. M. Mili'cevi'c, G. Montambaux, T. Ozawa, O. Jamadi, B. Real, I. Sagnes, A. Lemaˆıtre, L. Le Gratiet, A. Harouri, J. Bloch, and A. Amo Phys. Rev. X 9, 031010 (2019).
  32. A. Wild, E. Mariani, and M. E. Portnoi, Phys. Rev. B 105, 205306 (2022).
  33. Y. Yekta, H. Hadipour, and S. A. Jafari, Commun. Phys. 6, 46 (2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023