Memory Effects in the Magnetoresistance of Two-Component Electron Systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The theory of the magnetotransport in a two-component electron system with rare macroscopic defects has been developed. In such a system, the classical memory effects in the scattering of electrons by defects and a slow transfer of electrons between the components of the liquid occurring due to the electron–electron scattering play a decisive role. It has been shown that the flow regime depends on the ratio of the sample width to the characteristic internal length, which is determined by the rate of electron transfer between the components. In samples wider than the internal length, the flow of the two-component liquid as a whole is formed within the bulk of the sample and is described by the corresponding Drude formulas taking into account memory effects. In this case, the magnetoresistance is positive at low magnetic fields and negative at high fields. In samples narrower than the characteristic length, the transfers involving a change in the type of electrons do not provide enough time to form a unified liquid. As a result, the flows of different components are independent and described by their own conductivities, taking into account the memory effects, while the magnetoresistance is strictly negative.

作者简介

K. Denisov

Ioffe Physical–Technical Institute

Email: denisokonstantin@gmail.com
俄罗斯联邦, St. Petersburg, 194021

K. Baryshnikov

Ioffe Institute

Email: pavel.alekseev@mail.ioffe.ru
St. Petersburg, 194021 Russia

P. Alekseev

Ioffe Institute

编辑信件的主要联系方式.
Email: pavel.alekseev@mail.ioffe.ru
St. Petersburg, 194021

参考

  1. E. M. Baskin, L. N. Magarill, and M. V. Entin, Sov. Phys. JETP 48, 365 (1978).
  2. A. V. Bobylev, F. A. Maao, A. Hansen, and E. H. Hauge, Phys. Rev. Lett. 75, 197 (1995).
  3. A. V. Bobylev, F. A. Maa, A. Hansen, and E. H. Hauge, J. Stat. Phys. 87, 1205 (1997).
  4. A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev. B 64, 233321 (2001).
  5. A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev. Lett. 89, 266804 (2002).
  6. V. V. Cheianov, A. P. Dmitriev, and V. Yu. Kachorovskii, Phys. Rev. B 70, 245307 (2004).
  7. D. G. Polyakov, F. Evers, A. D. Mirlin, P. W¨ol e, Phys. Rev. B 64, 205306 (2001).
  8. A. D. Mirlin, D. G. Polyakov, F. Evers, and P. W¨ol e, Phys. Rev. Lett. 87, 126805 (2001).
  9. F. Evers, A. D. Mirlin, D. G. Polyakov, and P. W¨ol e, Physica E 12, 260 (2002).
  10. L. Bockhorn, P. Barthold, D. Schuh, W. Wegscheider, and R. J. Haug, Phys. Rev. B 83, 113301 (2011).
  11. A. T. Hatke, M. A. Zudov, J. L. Reno, L. N. Pfei er, and K. W. West, Phys. Rev. B 85, 081304 (2012).
  12. L. Bockhorn, I. V. Gornyi, D. Schuh, C. Reichl, W. Wegscheider, and R. J. Haug, Phys. Rev. B 90, 165434 (2014).
  13. R. G. Mani, A. Kriisa, and W. Wegscheider, Sci. Rep. 3, 2747 (2013).
  14. Q. Shi, P. D. Martin, Q. A. Ebner, M. A. Zudov, L. N. Pfei er, and K. W. West, Phys. Rev. B 89, 201301 (2014).
  15. X. Wang, P. Jia, R. R. Du, L. N. Pfei er, K. W. Baldwin, and K. W. West, Phys. Rev. B 106, L241302 (2022).
  16. P. S. Alekseev, Phys. Rev. Lett. 117, 166601 (2016).
  17. B. Horn-Cosfeld, J. Schluck, J. Lammert, M. Cerchez, T. Heinzel, K. Pierz, H. W. Schumacher, and D. Mailly, Phys. Rev. B 104, 045306 (2021).
  18. J. A. Sulpizio, L. Ella, A. Rozen et al. (Collaboration), Nature 576, 75 (2019).
  19. M. J. H. Ku, T. X. Zhou, Q. Li et al. (Collaboration), Nature 583, 537 (2020).
  20. G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov, Phys. Rev. B 98, 161303 (2018).
  21. T. Sca di, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, Phys. Rev. Lett. 118, 226601 (2017).
  22. T. Holder, R. Queiroz, T. Sca di et al. (Collaboration) Phys. Rev. B 100, 245305 (2019).
  23. A. N. Afanasiev, P. S. Aleksseev, A. A. Greshnov, and M. A. Semina, Phys. Rev. B 104, 195415 (2021).
  24. А. Н. Афанасьев, П. С. Алексеев, А. А. Грешнов, М. А. Семина, ФТП 55, 566 (2021).
  25. P. S. Alekseev and M. A. Semina, Phys. Rev. B 98, 165412 (2018).
  26. P. S. Alekseev and M. A. Semina, Phys. Rev. B 100, 125419 (2019).
  27. P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, B. N. Narozhny, M. Schutt, and M. Titov, Phys. Rev. Lett. 114, 156601 (2015).
  28. P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, B. N. Narozhny, M. Schutt, and M. Titov, Phys. Rev. B 95, 165410 (2017).
  29. П. С. Алексеев, И. В. Горный, А. П. Дмитриев, В. Ю. Качоровский, М. А. Семина, ФТП 51, 798 (2017).
  30. Y. Dai, K. Stone, I. Knez et al. (Collaboration) Phys. Rev. B 84, 241303 (2011).
  31. O. V. Dimitrova and V. E. Kravtsov, JETP Lett. 86, 670 (2007).
  32. N. M. Chtchelkatchev and I. S. Burmistrov, Phys. Rev. Lett. 100, 206804 (2008).
  33. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Наука, М. (1976).
  34. Е. М. Лифшиц, Л. П. Питаевский, Статистическя физика, ч. 2, Наука, М. (1976).
  35. В. И. Фалько, Д. Е. Хмельницкий, ЖЭТФ 95, 1988 (1989).
  36. П. С. Алексеев, ФТП 56, 866 (2022).
  37. K. S. Denisov, K. A. Baryshnikov, P. S. Alekseev, and N. S. Averkiev, J. Phys.: Condens. Matter 33, 385802 (2021).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023