Consolidation of al and Ta-substituted Li7La3Zr2O12 powders with lithium-ion conductivity by spark plasma sintering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Monophase powders of cubic modification with nominal composition Li6.4Al0.2La3Zr2O12 (Al–LLZ) and Li6.52Al0.08La3Zr1.75Ta0.25O12 (Ta–LLZ) were synthesized. Dense (~97–98%) ceramic samples of solid electrolyte with increased stability in air were obtained from these powders by spark plasma sintering. High Li-ion conductivity (4–6×10–4 S/cm) corresponding to the world level have been achieved.

Full Text

Restricted Access

About the authors

G. B. Kunshina

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Author for correspondence.
Email: g.kunshina@ksc.ru
Russian Federation, Apatity

I. V. Bocharova

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Email: g.kunshina@ksc.ru
Russian Federation, Apatity

A. А. Belov

Far Eastern Federal University

Email: g.kunshina@ksc.ru
Russian Federation, Vladivostok

O. O. Shichalin

Far Eastern Federal University

Email: g.kunshina@ksc.ru
Russian Federation, Vladivostok

E. K. Papynov

Far Eastern Federal University

Email: g.kunshina@ksc.ru
Russian Federation, Vladivostok

References

  1. Ярославцев, А.Б. Основные направления разработки и исследования твердых электролитов. Успехи химии. 2016. Т. 85. № 11. С. 1255. [Yaroslavtsev, A.B., Solid electrolytes: main prospects of research and development, Russ. Chem. Rev., 2016, vol. 85, no. 11, p. 1255.] doi: 10.1070/RCR4634
  2. Zhao, J., Wang, X., Wei, T., Zhang, Z., Liu, G., Yu, W., Dong, X., and Wang, J., Current challenges and perspectives of garnet-based solid-state electrolytes, J. Energy Storage, 2023, vol. 68, 107693. https://doi.org/10.1016/j.est.2023.107693
  3. Han, Y., Chen, Y., Huang, Y., Zhang, M., Li, Z., and Wang, Y., Recent progress on garnet-type oxide electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2023, vol. 49, p. 29375. https://doi.org/10.1016/j.ceramint.2023.06.153
  4. Kundu, S., Kraytsberg, A., and Ein-Eli, Y., Recent development in the field of ceramics solid-state electrolytes: I-oxide ceramic solid-state electrolytes, J. Solid State Electrochem., 2022, vol. 26, p. 1809.
  5. Куншина, Г.Б., Иваненко, В.И., Бочарова, И. В.Синтез и изучение проводимости Al-замещенного Li7La3Zr2O12. Электрохимия. 2019. Т. 55. С. 734. doi: 10.1134/S0424857019060136 [Kunshina, G.B., Ivanenko, V.I., and Bocharova, I.V., Synthesis and Study of Conductivity of Al-Substituted Li7La3Zr2O12, Russ. J. Electrochem., 2019, vol. 55, p. 558.] doi: 10.1134/S1023193519060132
  6. Куншина, Г.Б., Бочарова, И.В., Щербина, О. Б. Проводимость и механические свойства литий-проводящего твердого электролита Li7–3хAlхLa3Zr2O12. Неорган. материалы. 2022. Т. 58. № 2. С. 155. doi: 10.31857/S0002337X22020099 [Kunshina, G.B., Bocharova, I.V., and Shcherbina, O.B., Electrical Conductivity and Mechanical Properties of Li7–3хAlхLa3Zr2O12 Solid Electrolyte, Inorg. Mater., 2022, vol. 58, no. 2, p. 147.] doi: 10.1134/S0020168522020091
  7. Куншина, Г.Б., Бочарова, И. В. Особенности образования Al-замещенного Li7La3Zr2O12 кубической модификации. Журн. прикл. химии. 2022. Т. 95. № 6. С. 700. doi: 10.31857/S0044461822060032 [Kunshina, G.B. and Bocharova, I.V., Specific Features of the Formation of Cubic Al-substituted Li7La3Zr2O12, Russ. J. Appl. Chem., 2022, vol. 95, no. 6, p. 789.] doi: 10.1134/S1070427222060039
  8. Дружинин, К.В., Шевелин, П.Ю., Ильина, Е. А. Проблема циклируемости на границе Li7La3Zr2O12 |Li. Журн. прикл. химии. 2018. Т. 91. № 1. С. 70. [Druzhinin, K.V., Shevelin, P. Yu., and Il’ina, E.A., Cycling Performance at Li7La3Zr2O12 |Li Interface, Russ. J. Appl. Chem., 2018, vol. 91, p. 63.] https://doi.org/10.1134/S107042721801010X
  9. Han, F., Westover, A.S., Yue, J., Fan, X., Wang, F., Chi, M., Leonard, D.N., Dudney, N.J., Wang, H., and Wang, C., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nature Energy, 2019, vol. 4, p. 187.
  10. Cheng, L., Wu, C.H., Jarry, A., Chen, W., Ye, Y., Zhu, J., Kostecki, R., Persson, K., Guo, J., Salmeron, M., Chen, G., and Doeff, M., Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes, ACS Appl. Mater. & Interfaces, 2015, vol. 7(32), p. 17649.
  11. Sharafi, A., Yu, S., Naguib, M., Lee, M., Ma, C., Meyer, H.M., Nanda, J., Chi, M., Siegel, D.J., and Sakamoto, J., Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance, J. Mater. Chem. A., 2017, vol. 5, p. 13475.
  12. Xia, W., Xu, B., Duan, H., Tang, X., Guo, Y., Kang, H., Li, H., and Liu, H., Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2, J. Amer. Ceram. Soc., 2017, vol. 100, iss. 7, p. 2832.
  13. Kobi, S. and Mukhopadhyay, A., Structural (in)stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere, J. Eur. Ceram. Soc., 2018, vol. 38, p. 4707.
  14. Waetzig, K., Heubner, C., and Kusnezoff, M., Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7 (PO4)3 Ceramics, Crystals, 2020, vol. 10, 408. doi: 10.3390/cryst10050408
  15. Vinnichenko, M., Waetzig, K., Aurich, A., Baumgaertner, C., Herrmann, M., Ho, C.W., Kusnezoff M., and Lee, C.W., Li-Ion Conductive Li1.3Al0.3Ti1.7 (PO4)3 (LATP) Solid Electrolyte Prepared by Cold Sintering Process with Various Sintering Additives, Nanomaterials, 2022, vol. 12, 3178. https://doi.org/10.3390/nano12183178
  16. Shichalin, O.O., Belov, A.A., Zavyalov, A.P., Papynov, E.K., Azon, S.A., Fedorets, A.N., Buravlev, I. Yu, Balanov, M.I., Tananaev, I.G., Qian, Zhang, Yun, Shi, Mingjun, Niu, Wentao, Liu, and Portnyagin, A.S., Reaction synthesis of SrTiO3 mineral-like ceramics for strontium-90 immobilization via additional in-situ synchrotron studies, Ceram. Int., 2022, vol. 48, iss. 14, p. 19597. https://doi.org/10.1016/j.ceramint.2022.03.068
  17. Papynov, E.K., Shichalin, O.O., Buravlev, I. Yu., Belov, A.A., Portnyagin, A.S., Fedorets, A.N., Azarova, Yu.A., Tananaev, I.G., and Sergienko, V.I., Spark plasma sintering-reactive synthesis of SrWO4 ceramic matrices for 90Sr immobilization, Vacuum, 2020, vol. 180, 109628.
  18. Kotobuki, M. and Koishi, M., High conductive Al-free Y-doped Li7La3Zr2O12 prepared by spark plasma sintering, J. Alloys Compd., 2020, vol. 826, 154213.
  19. Baek, S.-W., Lee, J.-M., Young Kim, T., Song, M.-S., and Park, Y., Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries, J. Power Sources, 2014, vol. 249, p. 197. http://dx.doi.org/10.1016/j.jpowsour.2013.10.089
  20. Yamada, H., Ito, T., and Basappa, R.H., Sintering Mechanisms of High-Performance Garnet-type Solid Electrolyte Densified by Spark Plasma Sintering, Electrochim. Acta, 2016, vol. 222, p. 648. http://dx.doi.org/10.1016/j.electacta.2016.11.020
  21. Xue, J., Zhang, K., Chen, D., Zeng, J., and Luo, B., Spark plasma sintering plus heat-treatment of Ta-doped Li7La3Zr2O12 solid electrolyte and its ionic conductivity, Mater. Res. Express, 2020, vol. 7, 025518. https://doi.org/10.1088/2053-1591/ab7618
  22. Abdulai, M., Dermenci, K.B., and Turan, S., SPS sintering and characterization of Li7La3Zr2O12 solid electrolytes, MRS Energy Sustain., 2023, vol. 10, p. 94. https://doi.org/10.1557/s43581-022-00055-7
  23. Куншина, Г.Б., Шичалин, О. О. Белов, А.А., Папынов, Е.К., Бочарова, И.В., Щербина О. Б. Свойства литий-проводящей керамики Li1.3Al0.3Ti1.7 (PO4)3, полученной методом искрового плазменного спекания. Электрохимия. 2023. Т. 59. С. 123. doi: 10.31857/S0424857023030064 [Kunshina, G.B., Shichalin, O.O., Belov, A.A., Papynov, E.K., Bocharova, I.V., and Shcherbina, O.B., Properties of Li1.3Al0.3Ti1.7 (PO4)3 Lithium-Conducting Ceramics Synthesized by Spark Plasma Sintering, Russ. J. Electrochem., 2023, vol. 59, p. 173.] doi: 10.1134/S1023193523030060
  24. Tezuka, T., Inagaki, Y., Kodama, S., Takeda, H., and Yanase, I., Spark plasma sintering and ionic conductivity of Li1.3Al0.3Ti1.7 (PO4)3 fine particles synthesized by glass crystallization, Powder Technology, 2023, vol. 429, 118870. https://doi.org/10.1016/j.powtec.2023.118870
  25. Куншина, Г.Б., Бочарова, И.В., Калинкин, А. М. Оптимизация перехода тетрагональной модификации твердого электролита LLZO в кубическую с использованием механоактивации. Неорган. материалы. 2024. Т. 60. № 1. C. 111. [Kunshina, G.B., Bocharova, I.V., and Kalinkin, A.M., Optimization of LLZO solid electrolyte transition from tetragonal modification into cubic one using mechanical activation, Inorg. Mater., 2024, vol. 60, no. 1, p. 111.]
  26. Бочарова, И.В., Куншина, Г.Б., Ефремов, В. В. Синтез и изучение электрохимических характеристик Ta-замещенного твердого электролита Li7La3Zr2O12. Тр. Кольск. научн. центра РАН. Сер. техн. науки. 2023. Т. 14. № 3. С. 54. doi: 10.37614/2949-1215.2023.14.3.009 [Bocharova, I.V., Kunshina, G.B., and Efremov, V.V., Synthesis and Study of Electrochemical Characteristics of Ta-doped Solid Electrolyte Li7La3Zr2O12, Tr. Kolsk. nauchn. tsentra RAN. Ser. Tekh. nauki, (in Russian), 2023, vol. 14, no. 3, p. 54.]
  27. Charrad, G., Pradeilles, S., Taberna, P.-L., Simon, P., and Rozier, P., Investigation of Chemical and Thermal Stability of Li7–xLa3Zr2–xTaxO12 Garnet Type Solid-State Electrolyte to Assemble Self-Standing Li-based All Solid-State Battery, Energy Technol., 2023, vol. 11, 2300234. https://www.msesupplies.com
  28. Irvin, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, p. 132.
  29. Xue, W., Yang, Y., Yang, Q., Liu, Y., Wang, L., Chen, C., and Cheng, R., The effect of sintering process on lithium ionic conductivity of Li6.4Al0.2La3Zr2O12 garnet produced by solid-state synthesis, RSC Adv., 2018, vol. 8, p. 13083. doi: 10.1039/c8ra01329b
  30. Kotobuki, M., Munakata, H., Kanamura, K., Sato, Y., and Yoshida, T., Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode, J. Electrochem. Soc., 2010, vol. 157 (10), A1076. doi: 10.1149/1.3474232
  31. Zhang, Y., Chen, F., Tu, R., Shen, Q., and Zhang, L., Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes, J. Power Sources, 2014, vol. 268, 960.
  32. Dong, Z., Xu, C., Wu, Y., Tang, W., Song, S., Yao, J., Huang, Z., Wen, Z., Lu, L., and Hu, N., Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet Li7La3Zr2O12, Nanomaterials, 2019, vol. 9, 721. doi: 10.3390/nano9050721
  33. Salimkhani, H., Yurum, A., and Gursel, S.A., A glance at the influence of different dopant elements on Li7La3Zr2O12 garnets, Ionics, 2021, vol. 27, p. 3673. https://doi.org/10.1007/s11581-021-04152-4
  34. Zhu, Y., Zhang, J., Li, W., Zeng, Y., Wang, W., Yin, Z., Hao, B., Meng, Q., Xue, Y., Yang, J., and Li, S., Enhanced Li+ conductivity of Li7La3Zr2O12 by increasing lattice entropy and atomic redistribution via Spark Plasma Sintering, J. Alloys Compd., 2023, vol. 967, 171666.
  35. Hoinkis, N., Schuhmacher, J., Leukel, S., Loho, C., Roters, A., Richter, F.H., and Janek, J., Particle Size-Dependent Degradation Kinetics of Garnet-Type Li6.5La3Zr1.5Ta0.5O12 Solid Electrolyte Powders in Ambient Air, J. Phys. Chem. C., 2023, vol. 127 (17), p. 8320. https://doi.org/10.1021/acs.jpcc.3c01027
  36. Yi, M., Liu, T., Wang, X., Li, J., Wang, C., and Mo, Y., High densification and Li-ion conductivity of Al-free Li7–xLa3Zr2–xTaxO12 garnet solid electrolyte prepared by using ultrafine powders, Ceram. Int., 2019, vol. 45, p. 786. https://doi.org/10.1016/j.ceramint.2018.09.245

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of Al–LLZO powder after solid-phase annealing at 900°C (a) and 1100°C (b) and after SPS at 1000°C for 10 min (c).

Download (117KB)
3. Fig. 2. Diffraction patterns of Al–LLZO powder after IPS at 1000°C for 10 min.

Download (168KB)
4. Fig. 3. Diffraction patterns of mechanically activated Al–LLZO powder of cubic modification (a) after annealing at 1000°C and (b) subjected to SPS.

Download (172KB)
5. Fig. 4. Electrochemical impedance spectrum of Ta–LLZO after IPS in the range of 103–106 Hz. The inset shows the high-frequency section (105–106 Hz).

Download (73KB)
6. Fig. 5. Impedance hodographs of Ta–LLZO samples after SPS (a) and after solid-phase sintering (b). 1 – measured immediately after synthesis, 2 – after 10 days, 3 – after 1 month, 4 – after 2 months of storage in air.

Download (172KB)
7. Fig. 6. Chronoamperometric curves for Ta–LLZO after solid-phase sintering (a) and after SPS (b).

Download (98KB)

Note

2 Based on the materials of the lecture at the 17th International Meeting “Fundamental and Applied Problems of Solid State Ionics”, Chernogolovka, June 16–23, 2024.


Copyright (c) 2025 Russian Academy of Sciences