Oogonial stem cells in the ovaries of adult birds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In vertebrates, oogonial stem cells (OSCs) contribute to oogenesis in some fish, amphibians, and reptiles, enabling the production of new oocytes during each reproductive cycle. Classical literature from the 19th and 20th centuries established the prevailing notion that, in mammals and birds, the ovarian reserve is formed exclusively during embryogenesis, with OSCs absent in postnatal and adult ovaries. However, in 2004, OSCs were first identified in the ovaries of adult female mice, challenging the long-standing dogma that postnatal neo-oogenesis is impossible in mammals. Despite an increasing number of studies, this issue remains controversial. Advances in molecular and cellular techniques have significantly expanded our understanding of oogenesis across various animal groups. Notably, a recent study of adult chicken ovaries identified the presence of OSCs, further questioning traditional assumptions about ovarian biology in birds. In this review, we examine the evidence for postnatal oogenesis in this group of vertebrates.

Full Text

Restricted Access

About the authors

Yu. A. Shalutina

St. Petersburg State University

Email: svetlana.galkina@spbu.ru

Department of Embryology

Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034

O. D. Takki

St. Petersburg State University

Email: svetlana.galkina@spbu.ru

Department of Embryology

Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034

M. M. Kulak

St. Petersburg State University

Email: svetlana.galkina@spbu.ru

Department of Embryology

Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034

E. R. Gaginskaya

St. Petersburg State University

Email: svetlana.galkina@spbu.ru

Department of Embryology

Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034

S. A. Galkina

St. Petersburg State University

Author for correspondence.
Email: svetlana.galkina@spbu.ru

Department of Embryology

Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034

References

  1. Гагинская Е.Р., Чинь С.Х. Особенности оогенеза цыпленка. II. Фолликулярный период в развитии ооцитов // Онтогенез. 1980. Т. 11. С. 213–221.
  2. Давидьян А.Г., Кошель Е.И., Лаврова О.Б. и др. Функциональные особенности ядрышкового организатора в растущих ооцитах неполовозрелых самок птиц // Онтогенез. 2017. Т. 48. № 3. С. 1–8. https://doi.org/10.7868/S047514501703003X
  3. Давидьян А.Г., Кошель Е.И., Галкина С.А. и др. Функционирование ядрышкового организатора в растущих ооцитах кур: Ревизия существующих представлений // Онтогенез. 2023. Т. 54. № 1. С. 18–26. https://doi.org/10.31857/S0475145023010032
  4. Москалев А.В., Рудой А.С., Апчел А.В. и др. Особенности биологии трансформирующего ростового фактора β и иммунопатология // Вестник Российской Военно-медицинской академии. 2016. T. 2. № 54. С. 206–216.
  5. Чинь С.Х., Калинина E.И., Гагинская Е.Р. Особенности оогенеза цыпленка. I. Экстрафолликулярный период в развитии ооцитов // Онтогенез. 1979. Т. 10. № 4. С. 340–349.
  6. Alberico H., Fleischmann, Z., Bobbitt T. et al. Workflow optimization for identification of female germline or oogonial stem cells in human ovarian cortex using single-cell RNA sequence analysis // Stem Cells. 2022. V. 40. № 5. P. 523–536. https://doi.org/10.1093/stmcls/sxac015
  7. Anastassova-Kristeva M. Histochemical and autoradiographic investigation on the nucleolus in chicken ovopoesis // Ann. Histochem. 1976. V. 21. № 1. P. 35–40.
  8. Apperson K.D., Bird K.E., Cherian G. et al. Histology of the ovary of the laying hen (Gallus domesticus) // Vet. Sc. 2017. V. 4. № 4. P. 66. https://doi.org/10.3390/vetsci4040066
  9. Bellairs R., Osmond M. Atlas of Chick Development. London: Elsevier Academy Press. 2005. 476 p.
  10. Bhartiya D., Patel H. Ovarian stem cells — resolving controversies // J. Assist. Reprod. Genet. 2018. V. 35. P. 393–398. https://doi.org/10.1007/s10815-017-1080-6
  11. Brambell R.F.W. The Oogenesis of the Fowl (Gallus bankiva) // Philos. Trans. Roy. Soc. Lond. 1925. V. 214. P. 113–151.
  12. Brieño-Enríquez M.A., Faykoo-Martinez M., Goben M. et al. Postnatal oogenesis leads to an exceptionally large ovarian reserve in naked mole-rats // Nat. Commun. 2023. V. 14. № 1. P. 670. https://doi.org/10.1038/s41467-023-36284-8
  13. Bukovsky A, Caudle M.R., Gupta S.K. et al. Mammalian neooogenesis and expression of meiosis-specific protein SCP3 in adult human and monkey ovaries // Cell Cycle. 2008. V. 7. P. 683–686. https://doi.org/10. 4161/CC.7.5.5453
  14. Butler H. The reproductive biology of a Strepsirhine (Galago senegalensis senegalensis) // Int. Rev. Gen. Exptl. Zool. 1964. V. 1. P. 241–296. https://doi.org/10.1016/B978-1-4831-9977-1.50012-2
  15. Callebaut M. The constituent oocytal layers of the avian germ and the origin of the primordial germ cell yolk // Arch. Anat. Microsc. Morphol. Exp. 1983. V. 72. № 3. P. 199–214.
  16. Chen Y.C., Lin, S.P., Chang, Y.Y. et al. In vitro culture and characterization of duck primordial germ cells // Poult. Sci. 2019. V. 98. № 4. P. 1820–1832. https://doi.org/10.3382/ps/pey515
  17. D’Costa S., Petitte J.N. Characterization of stage-specific embryonic antigen-1 (SSEA-1) expression during early development of the turkey embryo // Int. J. Dev. Biol. 1999. V. 43. № 4. P. 349–356.
  18. de Melo Bernardo A., Sprenkels K., Rodrigues G. et al. Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation // Biol. Open. 2012. V. 1. № 11. P. 1146–1152. https://doi.org/10.1242/bio.20122592
  19. de Melo Bernardo A, Heeren A.M, van Iperen L. et al. Meiotic wave adds extra asymmetry to the development of female chicken gonads // Mol. Reprod. Dev. 2015. V. 82. № 10. P. 774–786. https://doi.org/10.1002/mrd.22516
  20. d’Hollander F. Recherches sur 1’ovogenèse et sur la structure et la signification du noyau vitellin de Balbiani chez les oiseaux // Arch. Anat. Microsc. 1904. V. 7. № 1. P. 117
  21. de Souza G.B., Costa J.J.N., da Cunha E.V. et al. Bovine ovarian stem cells differentiate into germ cells and oocyte‐like structures after culture in vitro // Reprod. Domest. Anim. 2017. V. 52. № 2. P. 243–250. https://doi.org/10.1111/rda.12886
  22. Donovan P.J. Growth factor regulation of mouse primordial germ cell development // Curr. Top. Dev. Biol. 1994. V. 29. P. 189–225. https://doi.org/10.1016/s0070-2153(08)60551-7
  23. Dunlop C.E., Bayne R.A., McLaughlin M. et al. Isolation, purification, and culture of oogonial stem cells from adult human and bovine ovarian cortex // The Lancet. 2014. V. 383. P. S45. https://doi.org/10.1016/S0140-6736(14)60308-1
  24. Erler P., Sweeney A., Monaghan J.R. Regulation of injury-induced ovarian regeneration by activation of oogonial stem cells // Stem Cells. 2017. V. 35. № 1. P. 236–247. https://doi.org/10.1002/stem.2504
  25. Extavour C.G., Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation // Development. 2003. V. 130. № 24. P. 5869–5884. https://doi.org/10.1242/dev.00804
  26. Eyal-Giladi H., Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick // Dev. Biol. 1976. V. 49. № 2. P. 321–337. https://doi.org/10.1016/0012-1606(76)90178-0
  27. Eyal-Giladi H. The gradual establishment of cell commitments during the early stages of chick development // Cell Differ. 1984. V. 14. № 4. P. 245–255. https://doi.org/10.1016/0045-6039(84)90013-7
  28. Gerard P. Contribution à l’étude de l’ovaire des Mammiferes: L’ovarie de Galago sambicus young // Archs. Biol. 1920. V. 30. P. 357–391.
  29. Gerard P. Etude sur l’ovogenèse et l’ontogenèse chez les Lemuriens du genre Galago // Archs. Biol. 1932. V. 43. P. 93–151.
  30. Gerard P., Herlant H. Sur la persistance de phénomènes d’oogenèse chez les Lemuriens adultes // Archs. Biol. 1953. V. 64. P. 97–111.
  31. González-Morán M.G. Histological and stereological changes in growing and regressing chicken ovaries during development // Anat. Rec. (Hoboken). 2011. V. 294. № 5. P. 893–904. https://doi.org/10.1002/ar.21364
  32. Gosden R.G. Germline stem cells in the postnatal ovary: is the ovary more like a testis? // Hum. Reprod. Update. 2004. V. 10. № 3. P. 193–195. https://doi.org/10.1093/humupd/dmh023
  33. Guo C.Q., Liu G., Zhao D. et al. Interaction of follicle-stimulating hormone and stem cell factor to promote primordial follicle assembly in the chicken // Front. Endocrinol. 2019. V. 10. P. 91. https://doi.org/10.3389/fendo.2019.00091
  34. Guraya S.S. Ovarian follicles in reptiles and birds. Michigan: Springer-Verlag, 1989. 285 p. https://doi.org/10.1007/978-3-642-83628-2_2
  35. Hall G.B., Long J.A., Wood B.J. et al. Germ cell dynamics during nest breakdown and formation of the primordial follicle pool in the domestic turkey (Meleagris gallopavo) // Poult. Sci. 2020. V. 99. № 5. P. 2746–2756. https://doi.org/10.1016/j.psj.2019.12.050
  36. Hansen C.L., Pelegri F. Primordial germ cell specification in vertebrate embryos: phylogenetic distribution and conserved molecular features of preformation and induction // Front. Cell Dev. Biol. 2021. V. 9. № 1. P. 730332. https://doi.org/10.3389/fcell.2021.730332
  37. He B., Lin J., Li J. et al. Basic fibroblast growth factor suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens // Gen. Comp. Endocrinol. 2012. V. 176. № 2. P. 173–181. https://doi.org/10.1016/j.ygcen.2012.01.012
  38. Herlant M. L’active génitale chez la femelle de Galago senegalensis mohli (Geoffr.) et ses rapports avec la persistance de phénomènes d’ovogenèse chez l’adulte // Ann. Soc. R. Zool. Belg. 1961. V. 91. P. 1–15.
  39. Horan C., Williams S. Oocyte stem cells: fact or fantasy? // Reproduction. 2017. V. 154. № 1. P. R23–R35. https://doi.org/10.1530/REP-17-0008
  40. Hou L., Wang J., Li X. et al. Characteristics of female germline stem cells from porcine ovaries at sexual maturity // Cell Transplant. 2018. V. 27. № 8. P. 1195–1202. https://doi.org/10.1177/0963689718784878
  41. Hughes G.C. The population of germ cells in the developing female chick // J. Embryol. Exp. Morph. 1963. V. 11 P. 513–536
  42. Hutt F.B., Grussendorf D.T. On the fecundity of partially ovariotomized fowls // J. Exp. Zool. 1933. V. 65. P. 199–214. https://doi.org/10.1002/jez.1400650203
  43. Hurley L.L., Crino O.L., Rowe M. et al. Variation in female reproductive tract morphology across the reproductive cycle in the zebra finch // Peer J. 2020. V. 8. P. e10195. https://doi.org/10.7717/peerj.10195
  44. Idahor K.O., Bozkurt Y., Bucak M.N. Avian Reproduction // Animal Reproduction. In Bozkurt Y., Bucak M. N., Payan-Carreira R. (Eds.) London: Intech. Open. 2021. P. 123–124. https://doi.org/10.5772/intechopen.101185
  45. Iikawa H., Nishina A., Morita M. et al. Labeling and sorting of avian primordial germ cells utilizing Lycopersicon esculentum lectin // Dev. Growth Differ. 2024. V. 66. № 9. P. 452–461. https://doi.org/10.1111/dgd.12948
  46. Ioannou J.M. Oogenesis in adult prosimians // Development. 1967. V. 17. № 1. P. 139–145.
  47. Jacob M., Bakst M.R. Developmental anatomy of the female reproductive tract // Reproductive Biology and Phylogeny of Birds. In Barrie G.M.J. (Eds.). Boca Raton: CRC Press, 2007. V. 6. P. 149–180.
  48. Johnson J., Canning J., Kaneko T. et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary // Nature. 2004. V. 428. P. 145–150. https://doi.org/10.1038/nature02316
  49. Jung K.M., Kim Y.M., Keyte A.L. et al. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch // FASEB J. 2019. V. 33. № 12. P. 13825–13836. https://doi.org/10.1096/fj.201900760RR
  50. Kim Y.M., Han J.Y. The early development of germ cells in chicken // Int. J. Dev. Biol. 2018. V. 62. № 1–2–3. P. 145–152. https://doi.org/10.1387/ijdb.170283jh
  51. Kinsky F.C. The consistent presence of paired ovaries in the Kiwi (Apteryx) with some discussion of this condition in other birds // J. Ornithol. 1971. V. 112. P. 334–357.
  52. Klein S., Dosch R., Altgilbers S. et al. Identification of chicken LOC420478 as Bucky ball equivalent and potential germ plasm organizer in birds // Sci. Rep. 2022. V. 12. № 1. P. 16858. https://doi.org/10.1038/s41598-022-21239-8.
  53. Klein S., Dosch R., Reiche S. et al. Dynamic maternal synthesis and segregation of the germ plasm organizer, Bucky ball, in chicken oocytes and follicles // Sci. Rep. 2024. V. 14. № 1. P. 27753. https://doi.org/10.1038/s41598-024-78544-7
  54. Kopp F., Stahl A. Évolution de la lignée germinale dans la médullaire ovarienne du poulet // C. R. Seance. Soc. Biol. 1975. V. 169. № 5. P. 1240–1244.
  55. Kumar T.C.A. Oogenesis in Lorises; Loris tardigradus lydekkerianus and Nycticebus coucang // Proc. Biol. Sci. 1968. V. 169. № 1015. P. 167–176. https://doi.org/10.1098/rspb.1968.0004
  56. Law A.S., Burt D.W., Armstrong D.G. Expression of Transforming Growth Factor-β mRNA in Chicken Ovarian Follicular Tissue // Gen. Comp. Endocr. 1995. V. 98. № 3. P. 227–233. https://doi.org/10.1006/gcen.1995.1064
  57. Lee H.C., Choi H.J., Lee H.G. et al. DAZL Expression explains origin and central formation of primordial germ cells in chickens // Stem Cells Dev. 2016. V. 25. № 1. P. 68–79. https://doi.org/10.1089/scd.2015.0208
  58. Li X., Yao X., Mu C. et al. Serum-and feeder-free culture of juvenile monkey female germline stem cells and testosterone regulation of their self-renewal // Stem Cell Rev. Rep. 2022. V. 18. № 1. P. 336–345. https://doi.org/10.1007/s12015-021-10278-9
  59. Liu J., Elsasser T.H., Long J.A. Microscopic morphology and apoptosis of ovarian tissue after cryopreservation using a vitrification method in post-hatching turkey poults, Meleagris gallopavo // J. Poult. Sci. 2017. V. 54. № 4. P. 303–311. https://doi.org/10.2141/jpsa.0170033
  60. Macdonald J., Glover J.D., Taylor L. et al. Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells // PLoS ONE. 2010. V. 5. № 11. P. e15518. https://doi.org/10.1371/journal.pone.0015518
  61. Madekurozwa M.C. An immunohistochemical study of ovarian follicle histogenesis in the early post-hatch Japanese quail (Coturnix coturnix japonica) // Anat. Histol. Embryol. 2012. V. 41. № 2. P. 79–86. https://doi.org/10.1111/j.1439-0264.2011.01105.x
  62. Mandl A.M., Zuckerman S. Numbers of normal and atretic oocytes in unilaterally spayed rats // J. Endocrinol. 1951a. V. 7. № 2. P. 112–119. https://doi.org/10.1677/joe.0.0070112
  63. Mandl A.M., Zuckerman S. The relation of age to numbers of oocytes // J. Endocrinol. 1951b. V. 7. № 2. P. 190–193. https://doi.org/10.1677/joe.0.0070190
  64. Méndez-Herrera M.C., Tamez L., Cándido A. et al. Follicle stimulating hormone increases somatic and germ cell number in the ovary during chick embryo development // Gen. Comp. Endocrinol. 1998. V. 111. № 2. P. 207–215. https://doi.org/10.1006/gcen.1998.7108
  65. Meng L., Zhang Y., Hua Y. et al. Identification of oogonial stem cells in chicken ovary // Cell Prolif. 2023. V. 56 № 3. P. e13371. https://doi.org/10.1111/cpr.13371
  66. Mfoundou J.D.L, Guo Y.J., Liu M.M. et al. The morphological and histological study of chicken left ovary during growth and development among Hy-line brown layers of different ages // Poult. Sci. 2021. V. 100. № 8. P. 101191. https://doi.org/10.1016/j.psj.2021.101191
  67. Mira A. Why is meiosis arrested? // J. Theor. Biol. 1998. V. 194. № 2. P. 275–287. https://doi.org/10.1006/jtbi.1998.0761
  68. Mizushima S., Ogawa Y., Kuroiwa A. Initial formation of and sex differences in primordial germ cells in Japanese quail // Reprod. Biol. 2024. V. 24. № 3. P. 100922. https://doi.org/10.1016/j.repbio.2024.100922
  69. Mohammadi H., Ansari-Pirsaraei Z. Follicle diameters, egg weight, and egg production performance in old laying hens injected with growth hormone and testosterone // J. Agr. Sci. Tech. 2016. V. 18. P. 949–959.
  70. Morales-Sánchez E., Campuzano-Caballero J.C., Cervantes A. et al. Which side of the coin are you on regarding possible postnatal oogenesis? // Arch. Med. Res. 2024. V. 55. № 8. P. 103071. https://doi.org/10.1016/j.arcmed.2024.103071
  71. Motono M., Ohashi T., Nishijima K. et al. Analysis of chicken primordial germ cells // Cytotechnology. 2008. V. 57. № 2. P. 199–205. https://doi.org/10.1007/s10616-008-9156-x
  72. Nakamura S., Kobayashi K., Nishimura T. et al. Identification of germline stem cells in the ovary of the teleost medaka // Science. 2010. V. 328. № 5985. P. 1561–1563. https://doi.org/10.1126/science.1185473
  73. Nakamura Y. Poultry genetic resource conservation using primordial germ cells // J. Reprod. Dev. 2016. V. 62. № 5. P. 431–437. https://doi.org/10.1262/jrd.2016-052
  74. Narbaitz R., Belanger LF. Action of acetazolamide on the chick embryo during late development // Can. J. Physiol. Pharmacol. 1975. V. 53. № 3. P. 397–402. https://doi.org/10.1139/y75-057
  75. Nguyen H.H., Bui L.Q., Uyen N.N. P. et al. Isolation of female germline stem cells from porcine ovarian tissue and differentiation into oocyte-like cells // J. Reprod. Dev. 2019. V. 65. № 5. P. 423–432. https://doi.org/10.1016/j.theriogenology.2022.12.004
  76. Pacchiarotti J., Maki C., Ramos T. et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary // Differentiation. 2010. V. 79. № 3. P. 159–170. https://doi.org/10.1016/j.diff.2010.01.001
  77. Paster M. Avian reproductive endocrinology // Vet. Clin. North. Am. Small Anim. Pract. 1991. V. 6. P. 1343–59. https://doi.org/10.1016/s0195-5616(91)50143-1
  78. Pearl R., Schoppe W.F. Studies on the physiology of reproduction in the domestic fowl // J. Exp. Zool. 1921. V. 34. № 1. P. 101–118. https://doi.org/10.1002/jez.1400340107
  79. Petitte J.N., Clark M.E., Liu G. et al. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells // Development. 1990. V. 108. № 1. P. 185–189. https://doi.org/10.1242/dev.108.1.185
  80. Petter-Rousseaux A. Recherches sur la biologie de la reproduction des primates inférieurs // Mammalia. 1962. V. 26. № 1. P. 1–88.
  81. Petter-Rousseaux A., Bourlière F. Persistence des phénomenes d’ovogenèse chez l’adulte de Daubentonia madagascariensis (Prosimii, Lemuriformes) // Folia Primatol. 1965. V. 3. № 4. P. 241–244.
  82. Ramaswami L.S., Anand Kumar T.C. Some aspects of reproduction of the female slender loris, Loris tardigradus lydekkerianus Cabr // Acta. Zool. 1965. V. 46. P. 257–263.
  83. Rao N.C.R. On the structure of the ovary and the ovarian ovum of Loris lydekkerianus, Cabr // J. Cell Sci. 1927. V. 2. № 281. P. 57–74. https://doi.org/10.1242/jcs.s2-71.281.57
  84. Raz E. The function and regulation of vasa-like genes in germ-cell development // Genome biol. 2000. V. 1. № 3. P. reviews 1017. https://doi.org/10.1186/gb-2000-1-3-reviews1017
  85. Rengaraj D., Han J.Y. Female germ cell development in chickens and humans: the chicken oocyte enriched genes convergent and divergent with the human oocyte // Int. J. Mol. Sci. 2022. V. 23. № 19. P. 11412. https://doi.org/10.3390/ijms231911412
  86. Silvestris E., Cafforio P., Felici C. et al. Ddx4+ oogonial stem cells in postmenopausal women’s ovaries: a controversial, undefined role // Cells. 2019. V. 8. № 7. P. 650. https://doi.org/10.3390/cells8070650
  87. Skalko R.G., Kerrigan J.M., Ruby J.R. et al. Intercellular bridges between oocytes in the chicken ovary. // Z. Zellforsch. Mikrosk. Anat. 1972. V. 128. № 1. P. 31–41. https://doi.org/10.1007/BF00306886
  88. Smith C.A., Roeszler K.N., Bowles J. et al. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid // BMC Dev. Biol. 2008. V. 8. P. 85. https://doi.org/10.1186/1471-213X-8-85
  89. Solter D., Knowles B.B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA. 1978. V. 75. № 11. P. 5565–5569. https://doi.org/10.1073/pnas.75.11.5565
  90. Swift C.H. Origin of the definitive sex-cells in the female chick and the relation to the primordial germ cells // Am. J. Anat. 1915. V. 18. P. 441–470.
  91. Tagami T., Kagami H. Developmental origin of avian primordial germ cells and its unique differentiation in the gonads of mixed-sex chimeras // Mol. Reprod. Dev. 1998. V. 50. № 3. P. 370–376. https://doi.org/10.1002/(SICI)1098-2795(199807) 50:3<370::AID-MRD14>3.0.CO;2-8
  92. Tagami T., Miyahara D., Nakamura Y. Avian primordial germ cells // Adv. Exp. Med. Biol. 2017. V. 1001. № 1. P. 1–18. https://doi.org/10.1007/978-981-10-3975-1_
  93. Tsai T.S., Johnson J., White Y. et al. The molecular characterization of porcine egg precursor cells // Oncotarget. 2017. V. 8. № 38. P. 63484–63505. https://doi.org/10.18632/oncotarget.18833
  94. Tsunekawa N., Naito M., Sakai Y. et al. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells // Development. 2000. V. 127. № 12. P. 2741–2750. https://doi.org/10.1242/dev.127.12.2741
  95. Ukeshima A., Fujimoto T. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick // Anat. Rec. 1991. V. 230. № 3. P. 378–386. https://doi.org/10.1002/ar.1092300311
  96. Waldeyer-Hartz H.W.G. Eierstock und Ei: ein Beitrag zur Anatomie und Entwicklungsgeschichte der Sexualorgane. Leipzig: Wilhelm Engelmann, 1870. 174 p.
  97. Wagner M., Yoshihara M., Douagi I. et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells // Nat. Commun. 2020. V. 11. № 1. P. 1147. https://doi.org/10.1038/s41467-020-14936-3
  98. White Y., Woods D., Takai Y. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women // Nat. Med. 2012. V. 18. P. 413–421. https://doi.org/10.1038/nm.2669
  99. Woods D.C., Tilly J.L. An evolutionary perspective on adult female germline stem cell function from flies to humans // Semin. Reprod. Med. 2013. V. 31. № 1. P. 24–32. https://doi.org/10.1055/s-0032-1331794
  100. Wu M., Lu Z., Zhu Q. et al. DDX04+ stem cells in the ovaries of postmenopausal women: existence and differentiation potential // Stem Cells. 2022. V. 40. № 1. P. 88–101. https://doi.org/10.1093/stmcls/sxab002u
  101. Xu H., Zhu X., Li W. et al. Isolation and in vitro culture of ovarian stem cells in chinese soft-shell turtle (Pelodiscus sinensis) // J. Cell Biochem. 2018. V. 119. № 9. P. 7667–7677. https://doi.org/10.1002/jcb.27114
  102. Yang S.Y., Lee H.J., Lee H.C. et al. The dynamic development of germ cells during chicken embryogenesis // Poultry Sci. 2018. V. 97. № 2. P. 650–657. https://doi.org/10.3382/ps/pex316
  103. Yoshihara M., Wagner M., Damdimopoulos A., et al. The continued absence of functional germline stem cells in adult ovaries // Stem Cells. 2023. V. 41. № 2. P. 105–110. https://doi.org/10.1093/stmcls/sxac070
  104. Zhang H., Zheng W., Shen Y. et al. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries // Proc. Natl. Acad. Sci. USA. 2012. V. 109. № 31. P. 12580–12585. https://doi.org/10.1073/pnas.1206600109
  105. Zhang Y., Wu W., Ma Y. et al. TGFB1 stimulates the proliferation of quiescent oogonial stem cells in chicken // Reproduction. 2024. V. 168. № 1. P. 230405. https://doi.org/10.1530/REP-23–0405
  106. Zhou L., Wang L., Kang J.X. et al. Production of fat‐1 transgenic rats using a post‐natal female germline stem cell line // Mol. Hum. Reprod. 2014. V. 20. № 3. P. 271–281. https://doi.org/10.1093/molehr/gat081
  107. Zhou S., Zhao D., Liu S. et al. TGF‐β1 sustains germ cell cyst reservoir via restraining follicle formation in the chicken // Cell. Biol. Intern. 2020. V. 44. № 3. P. 861–72.
  108. Zou K., Yuan Z., Yang Z. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries // Nat. Cell Biol. 2009. V. 11. № 5. P. 631–636. https://doi.org/10.1038/ncb1869

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Immunohistochemical detection of SSEA-1 protein, a marker of primordial germ cells, in the ovary of a mature (6-month-old) zebra finch. Cells positive for the SSEA-1 marker are outlined. Scale bar is 50 µm on the slide.

Download (246KB)

Copyright (c) 2025 Russian Academy of Sciences