Oogonial stem cells in the ovaries of adult birds
- Authors: Shalutina Y.A.1, Takki O.D.1, Kulak M.M.1, Gaginskaya E.R.1, Galkina S.A.1
-
Affiliations:
- St. Petersburg State University
- Issue: Vol 56, No 1 (2025)
- Pages: 47-56
- Section: ТОЧКА ЗРЕНИЯ
- URL: https://rjonco.com/0475-1450/article/view/685007
- DOI: https://doi.org/10.31857/S0475145025010064
- EDN: https://elibrary.ru/KVCEEY
- ID: 685007
Cite item
Abstract
In vertebrates, oogonial stem cells (OSCs) contribute to oogenesis in some fish, amphibians, and reptiles, enabling the production of new oocytes during each reproductive cycle. Classical literature from the 19th and 20th centuries established the prevailing notion that, in mammals and birds, the ovarian reserve is formed exclusively during embryogenesis, with OSCs absent in postnatal and adult ovaries. However, in 2004, OSCs were first identified in the ovaries of adult female mice, challenging the long-standing dogma that postnatal neo-oogenesis is impossible in mammals. Despite an increasing number of studies, this issue remains controversial. Advances in molecular and cellular techniques have significantly expanded our understanding of oogenesis across various animal groups. Notably, a recent study of adult chicken ovaries identified the presence of OSCs, further questioning traditional assumptions about ovarian biology in birds. In this review, we examine the evidence for postnatal oogenesis in this group of vertebrates.
Full Text

About the authors
Yu. A. Shalutina
St. Petersburg State University
Email: svetlana.galkina@spbu.ru
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034O. D. Takki
St. Petersburg State University
Email: svetlana.galkina@spbu.ru
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034M. M. Kulak
St. Petersburg State University
Email: svetlana.galkina@spbu.ru
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034E. R. Gaginskaya
St. Petersburg State University
Email: svetlana.galkina@spbu.ru
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034S. A. Galkina
St. Petersburg State University
Author for correspondence.
Email: svetlana.galkina@spbu.ru
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034References
- Гагинская Е.Р., Чинь С.Х. Особенности оогенеза цыпленка. II. Фолликулярный период в развитии ооцитов // Онтогенез. 1980. Т. 11. С. 213–221.
- Давидьян А.Г., Кошель Е.И., Лаврова О.Б. и др. Функциональные особенности ядрышкового организатора в растущих ооцитах неполовозрелых самок птиц // Онтогенез. 2017. Т. 48. № 3. С. 1–8. https://doi.org/10.7868/S047514501703003X
- Давидьян А.Г., Кошель Е.И., Галкина С.А. и др. Функционирование ядрышкового организатора в растущих ооцитах кур: Ревизия существующих представлений // Онтогенез. 2023. Т. 54. № 1. С. 18–26. https://doi.org/10.31857/S0475145023010032
- Москалев А.В., Рудой А.С., Апчел А.В. и др. Особенности биологии трансформирующего ростового фактора β и иммунопатология // Вестник Российской Военно-медицинской академии. 2016. T. 2. № 54. С. 206–216.
- Чинь С.Х., Калинина E.И., Гагинская Е.Р. Особенности оогенеза цыпленка. I. Экстрафолликулярный период в развитии ооцитов // Онтогенез. 1979. Т. 10. № 4. С. 340–349.
- Alberico H., Fleischmann, Z., Bobbitt T. et al. Workflow optimization for identification of female germline or oogonial stem cells in human ovarian cortex using single-cell RNA sequence analysis // Stem Cells. 2022. V. 40. № 5. P. 523–536. https://doi.org/10.1093/stmcls/sxac015
- Anastassova-Kristeva M. Histochemical and autoradiographic investigation on the nucleolus in chicken ovopoesis // Ann. Histochem. 1976. V. 21. № 1. P. 35–40.
- Apperson K.D., Bird K.E., Cherian G. et al. Histology of the ovary of the laying hen (Gallus domesticus) // Vet. Sc. 2017. V. 4. № 4. P. 66. https://doi.org/10.3390/vetsci4040066
- Bellairs R., Osmond M. Atlas of Chick Development. London: Elsevier Academy Press. 2005. 476 p.
- Bhartiya D., Patel H. Ovarian stem cells — resolving controversies // J. Assist. Reprod. Genet. 2018. V. 35. P. 393–398. https://doi.org/10.1007/s10815-017-1080-6
- Brambell R.F.W. The Oogenesis of the Fowl (Gallus bankiva) // Philos. Trans. Roy. Soc. Lond. 1925. V. 214. P. 113–151.
- Brieño-Enríquez M.A., Faykoo-Martinez M., Goben M. et al. Postnatal oogenesis leads to an exceptionally large ovarian reserve in naked mole-rats // Nat. Commun. 2023. V. 14. № 1. P. 670. https://doi.org/10.1038/s41467-023-36284-8
- Bukovsky A, Caudle M.R., Gupta S.K. et al. Mammalian neooogenesis and expression of meiosis-specific protein SCP3 in adult human and monkey ovaries // Cell Cycle. 2008. V. 7. P. 683–686. https://doi.org/10. 4161/CC.7.5.5453
- Butler H. The reproductive biology of a Strepsirhine (Galago senegalensis senegalensis) // Int. Rev. Gen. Exptl. Zool. 1964. V. 1. P. 241–296. https://doi.org/10.1016/B978-1-4831-9977-1.50012-2
- Callebaut M. The constituent oocytal layers of the avian germ and the origin of the primordial germ cell yolk // Arch. Anat. Microsc. Morphol. Exp. 1983. V. 72. № 3. P. 199–214.
- Chen Y.C., Lin, S.P., Chang, Y.Y. et al. In vitro culture and characterization of duck primordial germ cells // Poult. Sci. 2019. V. 98. № 4. P. 1820–1832. https://doi.org/10.3382/ps/pey515
- D’Costa S., Petitte J.N. Characterization of stage-specific embryonic antigen-1 (SSEA-1) expression during early development of the turkey embryo // Int. J. Dev. Biol. 1999. V. 43. № 4. P. 349–356.
- de Melo Bernardo A., Sprenkels K., Rodrigues G. et al. Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation // Biol. Open. 2012. V. 1. № 11. P. 1146–1152. https://doi.org/10.1242/bio.20122592
- de Melo Bernardo A, Heeren A.M, van Iperen L. et al. Meiotic wave adds extra asymmetry to the development of female chicken gonads // Mol. Reprod. Dev. 2015. V. 82. № 10. P. 774–786. https://doi.org/10.1002/mrd.22516
- d’Hollander F. Recherches sur 1’ovogenèse et sur la structure et la signification du noyau vitellin de Balbiani chez les oiseaux // Arch. Anat. Microsc. 1904. V. 7. № 1. P. 117
- de Souza G.B., Costa J.J.N., da Cunha E.V. et al. Bovine ovarian stem cells differentiate into germ cells and oocyte‐like structures after culture in vitro // Reprod. Domest. Anim. 2017. V. 52. № 2. P. 243–250. https://doi.org/10.1111/rda.12886
- Donovan P.J. Growth factor regulation of mouse primordial germ cell development // Curr. Top. Dev. Biol. 1994. V. 29. P. 189–225. https://doi.org/10.1016/s0070-2153(08)60551-7
- Dunlop C.E., Bayne R.A., McLaughlin M. et al. Isolation, purification, and culture of oogonial stem cells from adult human and bovine ovarian cortex // The Lancet. 2014. V. 383. P. S45. https://doi.org/10.1016/S0140-6736(14)60308-1
- Erler P., Sweeney A., Monaghan J.R. Regulation of injury-induced ovarian regeneration by activation of oogonial stem cells // Stem Cells. 2017. V. 35. № 1. P. 236–247. https://doi.org/10.1002/stem.2504
- Extavour C.G., Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation // Development. 2003. V. 130. № 24. P. 5869–5884. https://doi.org/10.1242/dev.00804
- Eyal-Giladi H., Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick // Dev. Biol. 1976. V. 49. № 2. P. 321–337. https://doi.org/10.1016/0012-1606(76)90178-0
- Eyal-Giladi H. The gradual establishment of cell commitments during the early stages of chick development // Cell Differ. 1984. V. 14. № 4. P. 245–255. https://doi.org/10.1016/0045-6039(84)90013-7
- Gerard P. Contribution à l’étude de l’ovaire des Mammiferes: L’ovarie de Galago sambicus young // Archs. Biol. 1920. V. 30. P. 357–391.
- Gerard P. Etude sur l’ovogenèse et l’ontogenèse chez les Lemuriens du genre Galago // Archs. Biol. 1932. V. 43. P. 93–151.
- Gerard P., Herlant H. Sur la persistance de phénomènes d’oogenèse chez les Lemuriens adultes // Archs. Biol. 1953. V. 64. P. 97–111.
- González-Morán M.G. Histological and stereological changes in growing and regressing chicken ovaries during development // Anat. Rec. (Hoboken). 2011. V. 294. № 5. P. 893–904. https://doi.org/10.1002/ar.21364
- Gosden R.G. Germline stem cells in the postnatal ovary: is the ovary more like a testis? // Hum. Reprod. Update. 2004. V. 10. № 3. P. 193–195. https://doi.org/10.1093/humupd/dmh023
- Guo C.Q., Liu G., Zhao D. et al. Interaction of follicle-stimulating hormone and stem cell factor to promote primordial follicle assembly in the chicken // Front. Endocrinol. 2019. V. 10. P. 91. https://doi.org/10.3389/fendo.2019.00091
- Guraya S.S. Ovarian follicles in reptiles and birds. Michigan: Springer-Verlag, 1989. 285 p. https://doi.org/10.1007/978-3-642-83628-2_2
- Hall G.B., Long J.A., Wood B.J. et al. Germ cell dynamics during nest breakdown and formation of the primordial follicle pool in the domestic turkey (Meleagris gallopavo) // Poult. Sci. 2020. V. 99. № 5. P. 2746–2756. https://doi.org/10.1016/j.psj.2019.12.050
- Hansen C.L., Pelegri F. Primordial germ cell specification in vertebrate embryos: phylogenetic distribution and conserved molecular features of preformation and induction // Front. Cell Dev. Biol. 2021. V. 9. № 1. P. 730332. https://doi.org/10.3389/fcell.2021.730332
- He B., Lin J., Li J. et al. Basic fibroblast growth factor suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens // Gen. Comp. Endocrinol. 2012. V. 176. № 2. P. 173–181. https://doi.org/10.1016/j.ygcen.2012.01.012
- Herlant M. L’active génitale chez la femelle de Galago senegalensis mohli (Geoffr.) et ses rapports avec la persistance de phénomènes d’ovogenèse chez l’adulte // Ann. Soc. R. Zool. Belg. 1961. V. 91. P. 1–15.
- Horan C., Williams S. Oocyte stem cells: fact or fantasy? // Reproduction. 2017. V. 154. № 1. P. R23–R35. https://doi.org/10.1530/REP-17-0008
- Hou L., Wang J., Li X. et al. Characteristics of female germline stem cells from porcine ovaries at sexual maturity // Cell Transplant. 2018. V. 27. № 8. P. 1195–1202. https://doi.org/10.1177/0963689718784878
- Hughes G.C. The population of germ cells in the developing female chick // J. Embryol. Exp. Morph. 1963. V. 11 P. 513–536
- Hutt F.B., Grussendorf D.T. On the fecundity of partially ovariotomized fowls // J. Exp. Zool. 1933. V. 65. P. 199–214. https://doi.org/10.1002/jez.1400650203
- Hurley L.L., Crino O.L., Rowe M. et al. Variation in female reproductive tract morphology across the reproductive cycle in the zebra finch // Peer J. 2020. V. 8. P. e10195. https://doi.org/10.7717/peerj.10195
- Idahor K.O., Bozkurt Y., Bucak M.N. Avian Reproduction // Animal Reproduction. In Bozkurt Y., Bucak M. N., Payan-Carreira R. (Eds.) London: Intech. Open. 2021. P. 123–124. https://doi.org/10.5772/intechopen.101185
- Iikawa H., Nishina A., Morita M. et al. Labeling and sorting of avian primordial germ cells utilizing Lycopersicon esculentum lectin // Dev. Growth Differ. 2024. V. 66. № 9. P. 452–461. https://doi.org/10.1111/dgd.12948
- Ioannou J.M. Oogenesis in adult prosimians // Development. 1967. V. 17. № 1. P. 139–145.
- Jacob M., Bakst M.R. Developmental anatomy of the female reproductive tract // Reproductive Biology and Phylogeny of Birds. In Barrie G.M.J. (Eds.). Boca Raton: CRC Press, 2007. V. 6. P. 149–180.
- Johnson J., Canning J., Kaneko T. et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary // Nature. 2004. V. 428. P. 145–150. https://doi.org/10.1038/nature02316
- Jung K.M., Kim Y.M., Keyte A.L. et al. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch // FASEB J. 2019. V. 33. № 12. P. 13825–13836. https://doi.org/10.1096/fj.201900760RR
- Kim Y.M., Han J.Y. The early development of germ cells in chicken // Int. J. Dev. Biol. 2018. V. 62. № 1–2–3. P. 145–152. https://doi.org/10.1387/ijdb.170283jh
- Kinsky F.C. The consistent presence of paired ovaries in the Kiwi (Apteryx) with some discussion of this condition in other birds // J. Ornithol. 1971. V. 112. P. 334–357.
- Klein S., Dosch R., Altgilbers S. et al. Identification of chicken LOC420478 as Bucky ball equivalent and potential germ plasm organizer in birds // Sci. Rep. 2022. V. 12. № 1. P. 16858. https://doi.org/10.1038/s41598-022-21239-8.
- Klein S., Dosch R., Reiche S. et al. Dynamic maternal synthesis and segregation of the germ plasm organizer, Bucky ball, in chicken oocytes and follicles // Sci. Rep. 2024. V. 14. № 1. P. 27753. https://doi.org/10.1038/s41598-024-78544-7
- Kopp F., Stahl A. Évolution de la lignée germinale dans la médullaire ovarienne du poulet // C. R. Seance. Soc. Biol. 1975. V. 169. № 5. P. 1240–1244.
- Kumar T.C.A. Oogenesis in Lorises; Loris tardigradus lydekkerianus and Nycticebus coucang // Proc. Biol. Sci. 1968. V. 169. № 1015. P. 167–176. https://doi.org/10.1098/rspb.1968.0004
- Law A.S., Burt D.W., Armstrong D.G. Expression of Transforming Growth Factor-β mRNA in Chicken Ovarian Follicular Tissue // Gen. Comp. Endocr. 1995. V. 98. № 3. P. 227–233. https://doi.org/10.1006/gcen.1995.1064
- Lee H.C., Choi H.J., Lee H.G. et al. DAZL Expression explains origin and central formation of primordial germ cells in chickens // Stem Cells Dev. 2016. V. 25. № 1. P. 68–79. https://doi.org/10.1089/scd.2015.0208
- Li X., Yao X., Mu C. et al. Serum-and feeder-free culture of juvenile monkey female germline stem cells and testosterone regulation of their self-renewal // Stem Cell Rev. Rep. 2022. V. 18. № 1. P. 336–345. https://doi.org/10.1007/s12015-021-10278-9
- Liu J., Elsasser T.H., Long J.A. Microscopic morphology and apoptosis of ovarian tissue after cryopreservation using a vitrification method in post-hatching turkey poults, Meleagris gallopavo // J. Poult. Sci. 2017. V. 54. № 4. P. 303–311. https://doi.org/10.2141/jpsa.0170033
- Macdonald J., Glover J.D., Taylor L. et al. Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells // PLoS ONE. 2010. V. 5. № 11. P. e15518. https://doi.org/10.1371/journal.pone.0015518
- Madekurozwa M.C. An immunohistochemical study of ovarian follicle histogenesis in the early post-hatch Japanese quail (Coturnix coturnix japonica) // Anat. Histol. Embryol. 2012. V. 41. № 2. P. 79–86. https://doi.org/10.1111/j.1439-0264.2011.01105.x
- Mandl A.M., Zuckerman S. Numbers of normal and atretic oocytes in unilaterally spayed rats // J. Endocrinol. 1951a. V. 7. № 2. P. 112–119. https://doi.org/10.1677/joe.0.0070112
- Mandl A.M., Zuckerman S. The relation of age to numbers of oocytes // J. Endocrinol. 1951b. V. 7. № 2. P. 190–193. https://doi.org/10.1677/joe.0.0070190
- Méndez-Herrera M.C., Tamez L., Cándido A. et al. Follicle stimulating hormone increases somatic and germ cell number in the ovary during chick embryo development // Gen. Comp. Endocrinol. 1998. V. 111. № 2. P. 207–215. https://doi.org/10.1006/gcen.1998.7108
- Meng L., Zhang Y., Hua Y. et al. Identification of oogonial stem cells in chicken ovary // Cell Prolif. 2023. V. 56 № 3. P. e13371. https://doi.org/10.1111/cpr.13371
- Mfoundou J.D.L, Guo Y.J., Liu M.M. et al. The morphological and histological study of chicken left ovary during growth and development among Hy-line brown layers of different ages // Poult. Sci. 2021. V. 100. № 8. P. 101191. https://doi.org/10.1016/j.psj.2021.101191
- Mira A. Why is meiosis arrested? // J. Theor. Biol. 1998. V. 194. № 2. P. 275–287. https://doi.org/10.1006/jtbi.1998.0761
- Mizushima S., Ogawa Y., Kuroiwa A. Initial formation of and sex differences in primordial germ cells in Japanese quail // Reprod. Biol. 2024. V. 24. № 3. P. 100922. https://doi.org/10.1016/j.repbio.2024.100922
- Mohammadi H., Ansari-Pirsaraei Z. Follicle diameters, egg weight, and egg production performance in old laying hens injected with growth hormone and testosterone // J. Agr. Sci. Tech. 2016. V. 18. P. 949–959.
- Morales-Sánchez E., Campuzano-Caballero J.C., Cervantes A. et al. Which side of the coin are you on regarding possible postnatal oogenesis? // Arch. Med. Res. 2024. V. 55. № 8. P. 103071. https://doi.org/10.1016/j.arcmed.2024.103071
- Motono M., Ohashi T., Nishijima K. et al. Analysis of chicken primordial germ cells // Cytotechnology. 2008. V. 57. № 2. P. 199–205. https://doi.org/10.1007/s10616-008-9156-x
- Nakamura S., Kobayashi K., Nishimura T. et al. Identification of germline stem cells in the ovary of the teleost medaka // Science. 2010. V. 328. № 5985. P. 1561–1563. https://doi.org/10.1126/science.1185473
- Nakamura Y. Poultry genetic resource conservation using primordial germ cells // J. Reprod. Dev. 2016. V. 62. № 5. P. 431–437. https://doi.org/10.1262/jrd.2016-052
- Narbaitz R., Belanger LF. Action of acetazolamide on the chick embryo during late development // Can. J. Physiol. Pharmacol. 1975. V. 53. № 3. P. 397–402. https://doi.org/10.1139/y75-057
- Nguyen H.H., Bui L.Q., Uyen N.N. P. et al. Isolation of female germline stem cells from porcine ovarian tissue and differentiation into oocyte-like cells // J. Reprod. Dev. 2019. V. 65. № 5. P. 423–432. https://doi.org/10.1016/j.theriogenology.2022.12.004
- Pacchiarotti J., Maki C., Ramos T. et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary // Differentiation. 2010. V. 79. № 3. P. 159–170. https://doi.org/10.1016/j.diff.2010.01.001
- Paster M. Avian reproductive endocrinology // Vet. Clin. North. Am. Small Anim. Pract. 1991. V. 6. P. 1343–59. https://doi.org/10.1016/s0195-5616(91)50143-1
- Pearl R., Schoppe W.F. Studies on the physiology of reproduction in the domestic fowl // J. Exp. Zool. 1921. V. 34. № 1. P. 101–118. https://doi.org/10.1002/jez.1400340107
- Petitte J.N., Clark M.E., Liu G. et al. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells // Development. 1990. V. 108. № 1. P. 185–189. https://doi.org/10.1242/dev.108.1.185
- Petter-Rousseaux A. Recherches sur la biologie de la reproduction des primates inférieurs // Mammalia. 1962. V. 26. № 1. P. 1–88.
- Petter-Rousseaux A., Bourlière F. Persistence des phénomenes d’ovogenèse chez l’adulte de Daubentonia madagascariensis (Prosimii, Lemuriformes) // Folia Primatol. 1965. V. 3. № 4. P. 241–244.
- Ramaswami L.S., Anand Kumar T.C. Some aspects of reproduction of the female slender loris, Loris tardigradus lydekkerianus Cabr // Acta. Zool. 1965. V. 46. P. 257–263.
- Rao N.C.R. On the structure of the ovary and the ovarian ovum of Loris lydekkerianus, Cabr // J. Cell Sci. 1927. V. 2. № 281. P. 57–74. https://doi.org/10.1242/jcs.s2-71.281.57
- Raz E. The function and regulation of vasa-like genes in germ-cell development // Genome biol. 2000. V. 1. № 3. P. reviews 1017. https://doi.org/10.1186/gb-2000-1-3-reviews1017
- Rengaraj D., Han J.Y. Female germ cell development in chickens and humans: the chicken oocyte enriched genes convergent and divergent with the human oocyte // Int. J. Mol. Sci. 2022. V. 23. № 19. P. 11412. https://doi.org/10.3390/ijms231911412
- Silvestris E., Cafforio P., Felici C. et al. Ddx4+ oogonial stem cells in postmenopausal women’s ovaries: a controversial, undefined role // Cells. 2019. V. 8. № 7. P. 650. https://doi.org/10.3390/cells8070650
- Skalko R.G., Kerrigan J.M., Ruby J.R. et al. Intercellular bridges between oocytes in the chicken ovary. // Z. Zellforsch. Mikrosk. Anat. 1972. V. 128. № 1. P. 31–41. https://doi.org/10.1007/BF00306886
- Smith C.A., Roeszler K.N., Bowles J. et al. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid // BMC Dev. Biol. 2008. V. 8. P. 85. https://doi.org/10.1186/1471-213X-8-85
- Solter D., Knowles B.B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA. 1978. V. 75. № 11. P. 5565–5569. https://doi.org/10.1073/pnas.75.11.5565
- Swift C.H. Origin of the definitive sex-cells in the female chick and the relation to the primordial germ cells // Am. J. Anat. 1915. V. 18. P. 441–470.
- Tagami T., Kagami H. Developmental origin of avian primordial germ cells and its unique differentiation in the gonads of mixed-sex chimeras // Mol. Reprod. Dev. 1998. V. 50. № 3. P. 370–376. https://doi.org/10.1002/(SICI)1098-2795(199807) 50:3<370::AID-MRD14>3.0.CO;2-8
- Tagami T., Miyahara D., Nakamura Y. Avian primordial germ cells // Adv. Exp. Med. Biol. 2017. V. 1001. № 1. P. 1–18. https://doi.org/10.1007/978-981-10-3975-1_
- Tsai T.S., Johnson J., White Y. et al. The molecular characterization of porcine egg precursor cells // Oncotarget. 2017. V. 8. № 38. P. 63484–63505. https://doi.org/10.18632/oncotarget.18833
- Tsunekawa N., Naito M., Sakai Y. et al. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells // Development. 2000. V. 127. № 12. P. 2741–2750. https://doi.org/10.1242/dev.127.12.2741
- Ukeshima A., Fujimoto T. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick // Anat. Rec. 1991. V. 230. № 3. P. 378–386. https://doi.org/10.1002/ar.1092300311
- Waldeyer-Hartz H.W.G. Eierstock und Ei: ein Beitrag zur Anatomie und Entwicklungsgeschichte der Sexualorgane. Leipzig: Wilhelm Engelmann, 1870. 174 p.
- Wagner M., Yoshihara M., Douagi I. et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells // Nat. Commun. 2020. V. 11. № 1. P. 1147. https://doi.org/10.1038/s41467-020-14936-3
- White Y., Woods D., Takai Y. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women // Nat. Med. 2012. V. 18. P. 413–421. https://doi.org/10.1038/nm.2669
- Woods D.C., Tilly J.L. An evolutionary perspective on adult female germline stem cell function from flies to humans // Semin. Reprod. Med. 2013. V. 31. № 1. P. 24–32. https://doi.org/10.1055/s-0032-1331794
- Wu M., Lu Z., Zhu Q. et al. DDX04+ stem cells in the ovaries of postmenopausal women: existence and differentiation potential // Stem Cells. 2022. V. 40. № 1. P. 88–101. https://doi.org/10.1093/stmcls/sxab002u
- Xu H., Zhu X., Li W. et al. Isolation and in vitro culture of ovarian stem cells in chinese soft-shell turtle (Pelodiscus sinensis) // J. Cell Biochem. 2018. V. 119. № 9. P. 7667–7677. https://doi.org/10.1002/jcb.27114
- Yang S.Y., Lee H.J., Lee H.C. et al. The dynamic development of germ cells during chicken embryogenesis // Poultry Sci. 2018. V. 97. № 2. P. 650–657. https://doi.org/10.3382/ps/pex316
- Yoshihara M., Wagner M., Damdimopoulos A., et al. The continued absence of functional germline stem cells in adult ovaries // Stem Cells. 2023. V. 41. № 2. P. 105–110. https://doi.org/10.1093/stmcls/sxac070
- Zhang H., Zheng W., Shen Y. et al. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries // Proc. Natl. Acad. Sci. USA. 2012. V. 109. № 31. P. 12580–12585. https://doi.org/10.1073/pnas.1206600109
- Zhang Y., Wu W., Ma Y. et al. TGFB1 stimulates the proliferation of quiescent oogonial stem cells in chicken // Reproduction. 2024. V. 168. № 1. P. 230405. https://doi.org/10.1530/REP-23–0405
- Zhou L., Wang L., Kang J.X. et al. Production of fat‐1 transgenic rats using a post‐natal female germline stem cell line // Mol. Hum. Reprod. 2014. V. 20. № 3. P. 271–281. https://doi.org/10.1093/molehr/gat081
- Zhou S., Zhao D., Liu S. et al. TGF‐β1 sustains germ cell cyst reservoir via restraining follicle formation in the chicken // Cell. Biol. Intern. 2020. V. 44. № 3. P. 861–72.
- Zou K., Yuan Z., Yang Z. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries // Nat. Cell Biol. 2009. V. 11. № 5. P. 631–636. https://doi.org/10.1038/ncb1869
Supplementary files
