Biologically Active Quinolinone Alkaloid from Marine Fungus Penicillium polonicum KMM 4719

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The marine fungal strain KMM 4719 was isolated from the sea cucumber Apostichopus japonicus and identified as Penicillium polonicum based on three molecular genetic markers: ITS, BenA, and CaM. 3-O-methylviridicatin was isolated from the ethyl acetate extract of the strain culture. 3-O-methylviridicatin demonstrated cardioprotective activity for the first time, as well as urease inhibitory activity (IC50 97.3 μM). In addition, 3-O-methylviridicatin at a concentration of 100 μM (25.1 μg/ml) inhibited the growth of the yeast-like fungus Candida albicans at 23.2%.

Texto integral

Acesso é fechado

Sobre autores

S. Starnovskaya

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

N. Kirichuk

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

V. Chausova

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

U. Khudyakova

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

E. Chingizova

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

A. Chingizov

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

A. Yurchenko

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

E. Yurchenko

G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: starnovskaya_ss@piboc.dvo.ru
Rússia, Vladivostok, 690022

Bibliografia

  1. Chen L., Wang X.-Y., Liu R.-Z., Wang G.-Y. // Mar. Drugs. 2021. V. 19. № 8. Art. 461. https://doi.org/10.3390/md19080461
  2. Pivkin M.V. // Biol. Bull. 2000. V. 198. № 1. P. 101–109. https://doi.org/10.2307/1542808
  3. Starnovskaya S.S., Nesterenko L.E., Popov R.S., Kirichuk N.N., Chausova V.E., Chingizova E.A. et al. // Nat. Prod. Bioprospect. 2024. V. 14. № 1. Art. 38. https://doi.org/10.1007/s13659-024-00459-7
  4. Duduk N., Vasić M., Vico I. // Plant Dis. 2014. V. 98. № 10. P. 1440–1440. https://doi.org/10.1094/PDIS-05-14-0550-PDN
  5. Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. // Stud. Mycol. 2004. V. 49. № 201. P. 201–241.
  6. Núñez F., Díaz M.C., Rodríguez M., Aranda E., Martín A., Asensio M.A. // J. Food Protect. 2000. V. 63. № 2. P. 231–236. https://doi.org/10.4315/0362-028X-63.2.231
  7. Wen Y., Lv Y., Hao J., Chen H., Huang Y., Liu C. et al. // Nat. Prod. Res. 2020. V. 34. № 13. P. 1879–1883. https://doi.org/10.1080/14786419.2019.1569003
  8. Cai X.-Y., Wang J.-P., Shu Y., Hu J.-T., Sun C.-T., Cai L. et al. // Nat. Prod. Res. 2022. V. 36. № 9. P. 2270–2276. https://doi.org/10.1080/14786419.2020.1828406
  9. Bai J., Zhang P., Bao G., Gu J.-G., Han L., Zhang L.-W. et al. // Appl. Microbiol. Biotechnol. 2018. V. 102. № 19. P. 8493–8500. https://doi.org/10.1007/s00253-018-9218-8
  10. Park M.S., Fong J.J., Oh S.-Y., Kwon K.K., Sohn J.H., Lim Y.W. // Antonie Van Leeuwenhoek. 2014. V. 106. № 2. P. 331–345. https://doi.org/10.1007/s10482-014-0205-5
  11. Neethu S., Midhun S.J., Radhakrishnan E.K., Jyothis M. // Microb. Pathog. 2018. V. 116. P. 263–272. https://doi.org/10.1016/j.micpath.2018.01.033
  12. Kalkan S.O., Bozcal E., Hames Tuna E.E., Uzel A. // Biocatal. Biotransform. 2020. V. 38. № 6. P. 469–479. https://doi.org/10.1080/10242422.2020.1785434
  13. Visagie C., Houbraken J., Frisvad J.C., Hong S.-B., Klaassen C., Perrone G. et al. // Stud. Mycol. 2014. V. 78. № 1. P. 343–371. https://doi.org/10.1016/j.simyco.2014.09.001
  14. Scholin C.A., Herzog M., Sogin M., Anderson D.M. // J. Phycol. 1994. V. 30. № 6. P. 999–1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x
  15. Elwood H., Olsen G., Sogin M. // Mol. Biol. Evol. 1985. V. 2. № 5. P. 399–410. https://doi.org/10.1093/oxfordjournals.molbev.a040362
  16. Glass N.L., Donaldson G.C. // Appl. Environ. Microbiol. 1995. V. 61. № 4. P. 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  17. Yurchenko A.N., Zhuravleva O.I., Khmel O.O., Oleynikova G.K., Antonov A.S., Kirichuk N.N. et al. // Mar. Drugs. 2023. V. 21. № 11. Art. 584. https://doi.org/10.3390/md21110584
  18. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547. https://doi.org/10.1093/molbev/msy096
  19. Kimura M. // J. Mol. Evol. 1980. V. 16. P. 111–120. https://doi.org/10.1007/BF01731581
  20. Nesterenko L.E., Popov R.S., Zhuravleva O.I., Kirichuk N.N., Chausova V.E., Krasnov K.S. et al. // Fermentation. 2023. V. 9. № 4. Art. 337. https://doi.org/10.3390/fermentation9040337
  21. Grosdidier A., Zoete V., Michielin O. // Proteins: Structure, Function, and Bioinformatics. 2007. V. 67. № 4. P. 1010–1025. https://doi.org/10.1002/prot.21367
  22. Brooks B.R., Brooks Iii C.L., Mackerell Jr A.D., Nilsson L., Petrella R.J., Roux B. et al. // J. Comput. Chem. 2009. V. 30. № 10. P. 1545–1614. https://doi.org/10.1002/jcc.21287
  23. Haberthür U., Caflisch A. // J. Comput. Chem. 2008. V. 29. № 5. P. 701–715. https://doi.org/10.1002/jcc.20832
  24. Grosdidier A., Zoete V., Michielin O. // Nucleic Acids Res. 2011. V. 39. № S2. P. W270–W277. https://doi.org/10.1093/nar/gkr366
  25. Balasubramanian A., Ponnuraj K. // J. Mol. Biol. 2010. V. 400. № 3. P. 274–283. https://doi.org/10.1016/j.jmb.2010.05.009
  26. Kirichuk N., Pivkin M., Hudyakova Y. // Eurasian Union Scientists. 2020. V. 3. № 9(78). P. 12–18. https://doi.org/10.31618/ESU.2413-9335.2020.3.78.1011
  27. Kirichuk N.N., Chausova V.Y., Pivkin M.V. // Bot. Pac. 2022. V. 11. № 2. P. 175–181. https://doi.org/10.17581/bp.2022.11213
  28. Sobol M.S., Hoshino T., Delgado V., Futagami T., Kadooka C., Inagaki F. et al. // BMC Genomics. 2023. V. 24. № 1. P. 249. https://doi.org/10.1186/s12864-023-09320-6
  29. Jones E.B.G., Pang K.-L., Abdel-Wahab M.A., Scholz B., Hyde K.D., Boekhout T. et al. // Fungal Diversity. 2019. V. 96. № 1. P. 347–433. https://doi.org/10.1007/s13225-019-00426-5
  30. Houbraken J., Wang L., Lee H.B., Frisvad J.C. // Persoonia: Mol. Phylogeny Evol. Fungi. 2016. V. 36. № 1. P. 299–314. https://doi.org/10.3767/003158516x692040
  31. Bubnova E.N. // 2010. V. 53. № 6. P. 595–600. https://doi.org/10.1515/bot.2010.063
  32. Li Y.-H., Li X.-M., Li X., Yang S.-Q., Shi X.-S., Li H.-L. et al. // Mar. Drugs. 2020. V. 18. № 11. Art. 553. https://doi.org/10.3390/md18110553
  33. Зверева Л.В., Высоцкая М.А. // Биология моря. 2005. № 6. С. 595–600.
  34. Li Y.-H., Yang S.-Q., Li X.-M., Li X., Wang B.-G., Li H. // Fitoterapia. 2023. V. 165. P. 105387. https://doi.org/10.1016/j.fitote.2022.105387
  35. Heguy A., Cai P., Meyn P., Houck D., Russo S., Michitsch R. et al. // Antivir. Chem. Chemother. 1998. V. 9. № 2. P. 149–155. https://doi.org/10.1177/095632029800900206
  36. El Euch I.Z., Frese M., Sewald N., Smaoui S., Shaaban M., Mellouli L. // Med. Chem. Res. 2018. V. 27. № 4. P. 1085–1092. https://doi.org/10.1007/s00044-017-2130-4
  37. Saeed A., Rehman S.-U., Channar P.A., Larik F.A., Abbas Q., Hassan M. et al. // J. Taiwan. Inst. Chem. Eng. 2017. V. 77. P. 54–63. https://doi.org/10.1016/j.jtice.2017.04.044
  38. Rego Y.F., Queiroz M.P., Brito T.O., Carvalho P.G., de Queiroz V.T., de Fátima Â. et al. // J. Adv. Res. 2018. V. 13. P. 69–100. https://doi.org/10.1016/j.jare.2018.05.003
  39. Navarathna D.H.M.L.P., Harris S.D., Roberts D.D., Nickerson K.W. // FEMS Yeast. Res. 2010. V. 10. № 2. P. 209–213. https://doi.org/10.1111/j.1567-1364.2009.00602.x
  40. Osterholzer J.J., Surana R., Milam J.E., Montano G.T., Chen G.-H., Sonstein J. et al. // Am. J. Pathol. 2009. V. 174. № 3. P. 932–943. https://doi.org/10.2353/ajpath.2009.080673
  41. Xiong Z., Zhang N., Xu L., Deng Z., Limwachiranon J., Guo Y. et al. // Microbiol. Spectr. 2023. V. 11. № 2. P. e03508–03522. https://doi.org/10.1128/spectrum.03508-22
  42. Navarathna D.H.M.L.P., Das A., Morschhäuser J., Nickerson K.W., Roberts D.D. // Microbiology. 2011. V. 157. № 1. P. 270–279. https://doi.org/10.1099/mic.0.045005-0
  43. Ma Y.M., Qiao K., Kong Y., Li M.Y., Guo L.X., Miao Z. et al. // Nat. Prod. Res. 2017. V. 31. № 8. P. 951–958. https://doi.org/10.1080/14786419.2016.1258556
  44. Song W.Q., Liu M.L., Li S.Y., Xiao Z.P. // Curr. Top. Med. Chem. 2022. V. 22. № 2. P. 95–107. https://doi.org/10.2174/1568026621666211129095441
  45. Hameed A., Al-Rashida M., Uroos M., Qazi S.U., Naz S., Ishtiaq M., et al. // Expert Opin. Ther. Patents. 2019. V. 29. № 3. P. 181–189. https://doi.org/10.1080/13543776.2019.1584612
  46. Li P., Fan Y., Chen H., Chao Y., Du N., Chen J. // Chin. J. Oceanol. Limnol. 2016. V. 34. № 5. P. 1072–1075. https://doi.org/10.1007/s00343-016-5097-y
  47. Muñoz-Sánchez J., Chánez-Cárdenas M.E. // J. Appl. Toxicol. 2019. V. 39. № 4. P. 556–570. https://doi.org/10.1002/jat.3749

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. A phylogenetic tree constructed by the ML method based on the combined ITS-BetaCaM sequences, showing the phylogenetic position of strain KMM 4719 among representatives of the genus Penicillium of the Fasciculata section of the Viridicata series. The reliability of the tree was assessed by a bootstrap text of 1000 replicas, the values (%) of which are indicated in the internal nodes. The scale shows the number of nucleotide substitutions per site.

Baixar (212KB)
3. 2. The structural formula of 3-O-methylviridicatin (1).

Baixar (54KB)
4. Fig. 3. Calculated complex of urease (PDB ID 4H9M) and thiourea. The green lines show hydrogen bonds, the yellow hydrophobic interactions between the ligand and the target: (a) general view, (b) enlarged image.

Baixar (709KB)
5. Fig. 4. Calculated complex of urease (PDB ID 4H9M) and 3-O-methylviridicatin (1). The green ones indicate the hydrogen bonds: (a) complex of 3-O-methylviridicatin with amino acid residues of the β domain of urease (ΔG = -6.924 kcal/mol), (b) complex of 3-O-methylviridicatin located between the N-terminal αß and C-terminal (αß)8 TIM domains (ΔG = -6.559 kcal/mol).

Baixar (698KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025