Development of a method for detection and quantitative analysis of engeneered endolysin LysAm24-SMAP in biological samples
- 作者: Klimova A.A.1,2, Grigoriev I.V.1, Vasina D.V.1, Anurova M.N.2, Gushchin V.A.1,3, Antonova N.P.1
-
隶属关系:
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation
- Lomonosov Moscow State University
- 期: 卷 60, 编号 4 (2024)
- 页面: 413-423
- 栏目: Articles
- URL: https://rjonco.com/0555-1099/article/view/674547
- DOI: https://doi.org/10.31857/S0555109924040108
- EDN: https://elibrary.ru/RZYKWW
- ID: 674547
如何引用文章
详细
In recent years modified bacteriophage lysins are widely investigated for the purposes of antibacterial therapy development. Thus, effective and precise methods for the quantitative analysis of these enzymes are of high demand. The enzyme-linked immunosorbent assay (ELISA) method has been developed for the detection of recombinant modified endolysin LysAm24-SMAP in biological samples. The optimal parameters for protein detection were determined, particularly, the influence of salt and the composition of the buffer system for samples preparation was studied. The applicability of the immunodetection system of the genetically engineered endolysin LysAm24-SMAP in various biological samples with enzyme concentrations from 0.4 ng/ml was demonstrated. Also, the influence of matrix effects in animals’ organs and tissues homogenates samples, producer strain lysates and their individual components during the analysis was assessed and it was shown that 0.65 M NaCl addition in the ELISA buffer is crucial for achieving correct results and reduces non-specific interactions in the case of LysAm24-SMAP. The effectiveness of the developed system in the immunochemical control of the bacteriolytic enzyme was confirmed.
全文:

作者简介
A. Klimova
Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation; Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation
Email: northernnatalia@gmail.com
俄罗斯联邦, Moscow, 123098; Moscow, 119991
I. Grigoriev
Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: northernnatalia@gmail.com
俄罗斯联邦, Moscow, 123098
D. Vasina
Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: northernnatalia@gmail.com
俄罗斯联邦, Moscow, 123098
M. Anurova
Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation
Email: northernnatalia@gmail.com
俄罗斯联邦, Moscow, 119991
V. Gushchin
Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation; Lomonosov Moscow State University
Email: northernnatalia@gmail.com
俄罗斯联邦, Moscow, 123098; Moscow, 119991
N. Antonova
Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
编辑信件的主要联系方式.
Email: northernnatalia@gmail.com
俄罗斯联邦, Moscow, 123098
参考
- Gerstmans H., Rodríguez-Rubio L., Lavigne R., Briers Y. // Biochem. Soc. Trans. 2016. V. 44. P. 123–128. https://doi.org/10.1042/BST20150192
- Love M.J., Bhandari D., Dobson R.C.J., Billington C. // Antibiotics (Basel). 2018. V. 7. № 1. 17. https://doi.org/10.3390/antibiotics7010017.
- Huemer M., Shambat S.M., Brugger S.D., Zinkernagel A.S. // EMBO Rep. 2020. e51034. https://doi.org/10.15252/embr.202051034
- Baquero F. // Int. Microbiol. 2021. V. 24. P. 499–506. https://doi.org/10.1007/s10123-021-00184-y
- Antonova N.P., Vasina D.V., Lendel A.M., Usachev E.V., Makarov V.V., Gintsburg A.L. et al. // Viruses. 2019. V. 11. № 3. https://doi.org/10.3390/v11030284
- Gutiérrez D., Briers Y. // Curr. Opin. Biotechnol. 2021. V. 68. P. 15–22. https://doi.org/10.1016/j.copbio.2020.08.014
- Fursov M.V., Abdrakhmanova R.O., Antonova N.P., Vasina D.V., Kolchanova A.D., Bashkina O.A. et al. // Viruses. 2020. V. 12. P. 545. https://doi.org/10.3390/v12050545
- Tabatabaei M.S., Ahmed M. // Methods Mol. Biol. 2022. 2508. P. 115–134. https://doi.org/10.1007/978-1-0716-2376-3_10
- Antonova N.P., Vasina D.V., Rubalsky E.O., Fursov M.V., Savinova A.S., Grigoriev I.V. et al. // Biomolecules. 2020. V. 10. P. 440. https://doi.org/10.3390/biom10030440
- Dawson R.M., Liu C.Q. // Drug Dev. Res. 2009. V. 70. P. 481–498.
- Vasina D.V., Antonova N.P., Grigoriev I.V., Yakimakha V.S., Lendel A.M., Nikiforova M.A. et al. // Front. Microbiol. 2021. V. 12. https://doi.org/10.3389/fmicb.2021.748718
- Arshinov I.R., Antonova N.P., Grigoriev I.V., Pochtovyi A.A., Tkachuk A.P., Gushchin V.A. et al. // Applied Biochemistry and Microbiology. 2022. V. 58. Suppl. 1. https://doi.org/10.1134/S0003683822100027
- Alves N.J. // Antib Ther. 2019. V. 2 P. 33–39. https://doi.org/10.1093/abt/tbz002
- Minas K., McEwan N.R., Newbold C.J., Scott K.P. // FEMS Microbiol. Lett. 2011. V. 325. P. 162–169. https://doi.org/10.1111/j.1574-6968.2011.02424.x
- Li G., Howard S.P. // Methods Mol. Biol. 2017. V. 1615. P. 143–149.
- Jun S.Y., Jung G.M., Yoon S.J., Youm S.Y., Han H.-Y., Lee J.-H. et al. // Clin Exp Pharmacol Physiol. 2016. V. 43. P. 1013–1016. https://doi.org/10.1111/1440-1681.12613
- Grishin A.V., Lavrova N.V., Lyashchuk A.M., Strukova N.V., Generalova M.S., Ryazanova A.V. et al. // Molecules. 2019. V. 24. https://doi.org/10.3390/molecules24101879
- Ross G.M. S., Filippini D., Nielen M.W.F., Salentijn G.I. // Anal. Chem. 2020. V. 92. P. 15587–15595. https://doi.org/10.1021/acs.analchem.0c03740
- Adhya S., Merril C. R., Biswas B. // Cold Spring Harb. Perspect Med. 2014. V. 4. https://doi.org/10.1101/cshperspect.a012518
- Höltje J.-V. // Arch. Microbiol. 1995. V. 164. P. 243–254. https://doi.org/10.1007/BF02529958
- Chen T., Rao, Y., Li J., Ren C., Tang D., Lin T. et al. // Int. J. Mol. Sci. 2020. V. 21. https://doi.org/10.3390/ijms21020501
- Callewaert L., Michiels C.W. // J. Biosci. 2010. V. 35. P. 127–160. https://doi.org/10.1007/s12038-010-0015-5
- Liu R., Meng Q., Dai Y., Zhang Y. // Chinese journal of biotechnology. V. 39. P. 4482–4496. https://doi.org/10.13345/j.cjb.230241
- Xu H., Lu J.R., Williams D.E. // J. Phys. Chem. B. 2006. V. 110. P. 1907–1914. https://doi.org/10.1021/jp0538161
- Generalova L.V., Grigoriev I.V., Vasina D.V., Tkachuk A.P., Kruzhkova I.S., Kolobukhina L.V. et al. // Bulletin of RSMU. 2022. V. 1. P. 14–21. https://doi.org/10.24075/brsmu.2022.005
- Gushchin V.A., Ogarkova D.A., Dolzhikova I.V., Zubkova O.V., Grigoriev I.V., Pochtovyi A.A. et al. // Front Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.1023164
- Antonova N., Vasina D., Lendel A., Usachev E., Makarov V., Gintsburg A. et al. // Viruses. 2019. V. 11. https://doi.org/10.3390/v11030284
- Stiller J., Jasensky A.-K., Hennies M., Einspanier R., Kohn B. // J. Vet. Diagn. Invest. 2016. V. 3. P. 235–243. https://doi.org/10.1177/1040638716634397
- Biswas S., Saha M.K. // Immunochemistry & Immunopathology. 2015. V. 1. https://doi.org/10.4172/icoa.1000109
补充文件
