Role of mutations of the piwi and aub genes in the radiation-induced response in Drosophila melanogaster
- Authors: Yushkova E.A.1
-
Affiliations:
- Komi Scientific Centre of the Ural Branch of the Russian Academy of Science
- Issue: Vol 65, No 1 (2025)
- Pages: 64–73
- Section: Molecular Radiobiology
- URL: https://rjonco.com/0869-8031/article/view/688228
- DOI: https://doi.org/10.31857/S0869803125010066
- EDN: https://elibrary.ru/KONDGN
- ID: 688228
Cite item
Abstract
In this study, for the first time, information was obtained on the sensitivity of animals with dysfunction of the piwi and aub genes to chronic irradiation in low doses (20 sGy) and the manifestation of a radioadaptive response in the analyzed mutants. The reaction of mutant genotypes of Drosophila melanogaster to irradiation was analyzed in terms of lifespan, fertility, and DNA damage. The experimental results showed that females with the piwi mutation exhibited an adaptive effect of chronic irradiation in low dose (20 sGy) in response to subsequent exposure in dose 60 Gy. Chronic low-dose irradiation did not affect reproductive functions and the level of DNA damage in the gonads of individuals with dysfunction of the piwi and aub genes, but led to an increase in their lifespan. Thus, a functional decrease in some genes of the Argonaute family can modify the effects of irradiation with the formation of radioresistant traits in animals.
Full Text

About the authors
Elena A. Yushkova
Komi Scientific Centre of the Ural Branch of the Russian Academy of Science
Author for correspondence.
Email: ushkova@ib.komisc.ru
ORCID iD: 0000-0002-5580-2276
Institute of Biology
Russian Federation, Komi Republic, Syktyvkar; Kommunisticheskaya street, 28References
- Nikjoo H., O’Neill P, Wilson W.E. et al. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res. 2001;156(5):577–583. https://doi.org/10.1667/0033-7587(2001)156[0577: cafdts]2.0.co;2
- Wei J., Wang B., Wang H. et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid. Med. Cell. Longev. 2019;2019: 3010342. https://doi.org/10.1155/2019/3010342
- Weigel C., Veldwijk M.R., Oakes C.C. et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat. Commun. 2016;7:10893. https://doi.org/10.1038/ncomms10893
- Yushkova E. Genetic mechanisms of formation of radiation-induced instability of the genome and its transgenerational effects in the descendants of chronically irradiated individuals of Drosophila melanogaster. Radiat. Environ. Biophis. 2020;59(2): 221–236. https://doi.org/10.1007/s00411-020-00833-2
- Yushkova E. Contribution of transposable elements to transgenerational effects of chronic radioactive exposure of natural populations of Drosophila melanogaster living for a long time in the zone of the Chernobyl nuclear disaster. J. Environ. Radioact. 2022a;251–252:106945. https://doi.org/10.1016/j.jenvrad.2022.106945
- Seong K.M., Cenci G. Editorial: The genetic and epigenetic bases of cellular response to ionizing radiation. Front. Genet. 2022;13:857168. https://doi.org/10.3389/fgene.2022.857168
- Shesterikova E.M., Bondarenko V.S., Volkova P.Yu. Differential gene expression in chronically irradiated herbaceous species from the Chernobyl exclusion zone. Int. J. Radiat. Biol. 2023;99(2):229–237. https://doi.org/10.1080/09553002.2022.2087927
- Shin E., Lee S., Kang H. et al. Organ-specific effects of low dose radiation exposure: A comprehensive review. Front. Genet. 2020;11:566244. https://doi.org/10.3389/fgene.2020.566244
- Guéguen Y., Bontemps A., Ebrahimian T.G. Adaptive responses to low doses of radiation or chemicals their cellular and molecular mechanisms. Cell. Mol. Life Sci. 2019;76(7):1255‒1273. https://doi.org/10.1007/s00018-018-2987-5
- Yushkova E. Radiobiological features in offspring of natural populations of Drosophila melanogaster after Chernobyl accident. Environ. Mol. Mutagen. 2022b;63:84–97. https://doi.org/10.1002/em.22476
- Koval L., Proshkina E., Shaposhnikov M., Moskalev A. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontol. 2020;21:45–56. https://doi.org/10.1007/s10522-019-09842-1
- Dubrova Yu.E., Sarapultseva E.I. Radiation-induced transgenerational effects in animals. Int. J. Radiat. Biol. 2022;98(6):1047–1053. https://doi.org/10.1080/09553002.2020.1793027
- Sato K., Siomi M.C. The piRNA pathway in Drosophila ovarian germ and somatic cells. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2020;96(1):32–42. https://doi.org/10.2183/pjab.96.003
- Toth K.F., Pezic D., Stuwe E. Webster A. The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med Biol. 2016;886:51–77. https://doi.org/10.1007/978-94-017-7417-8_4
- Gonzalez L.E., Tang X., Lin H. Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila. Genetics. 2021;219(1):iyab091. https://doi.org/10.1093/genetics/iyab091
- Sousa-Victor P., Ayyaz A., Hayashi R. et al. Piwi is required to limit exhaustion of aging somatic stem cells. Cell Reports. 2017;20:2527–2537. https://doi.org/10.1016/j.celrep.2017.08.059
- Proshkina E., Yushkova E., Koval L. et al. Tissue-specific knockdown of genes of the Argonaute family modulates lifespan and radioresistance in Drosophila melanogaster. Int. J. Mol. Sci. 2021;22(5):2396. https://doi.org/10.3390/ijms22052396
- Evangelou A., Ignatiou A., Antoniou C. et al. Unpredictable effects of the genetic background of transgenic lines in physiological quantitative traits. G3 (Bethesda). 2019;9(11):3877–3890. https://doi.org/10.1534/g3.119.400715
- Theron E., Maupetit-Mehouas S., Pouchin P. et al. The interplay between the Argonaute proteins Piwi and Aub within Drosophila germarium is critical for oogenesis, piRNA biogenesis and TE silencing. Nucl. Acids Res. 2018;46:10052–10065. https://doi.org/10.1093/nar/gky695
- Adashev V.E., Kotov A.A., Bazylev S.S. et al. Stellate genes and the piRNA pathway in speciation and reproductive isolation of Drosophila melanogaster. Front. Genet. 2021;11:610665. https://doi.org/10.3389/fgene.2020.610665
- Yushkova E.A. The effects of transpositions of functional I retrotransposons depend on the conditions and dose of parental exposure. Int. J. Radiat. Biol. 2023;99(5):737–749. https://doi.org/10.1080/09553002.2023.2142978
- Olive P.L., Wlodek D., Durand R.E., Banáth J.P. Factors influence DNA migration from individual cells subjected to gel electrophoresis. Exp. Cell Res. 1992;198(2):259–260. https://doi.org/10.1016/0014-4827(92)90378-l
- Han S.K., Lee D., Lee H. et al. OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. 2016;7:56147–56152. https://doi.org/10.18632/oncotarget.11269
- Bonner W.M. Low-dose radiation: Thresholds, bystander effects, and adaptive responses. PNAS. 2003;100(9):4973–4975. https://doi.org/10.1073/pnas.1031538100
- Asaithamby A., Chen D.J. Cellular Responses to DNA double-strand breaks after low-dose gamma-irradiation. Nucl. Acid. Res. 2009;37(12):3912⎯3923. https://doi.org/10.1093/nar/gkp237
- Юшкова Е.А., Зайнуллин В.Г. Радиационно-индуцированная фрагментация ДНК в клетках соматических и генеративных тканей Drosophila melanogaster. Радиац. биология. Радиоэкология. 2015;55(1):97–103. [Yushkova E., Zainullin V. Radiation-induced DNA fragmentation in cells of somatic and generative tissues of Drosophila melanogaster. Radiats. Biol. Radioecol. 2015;55(1):97–103. (In Russ.)]. https://doi.org/10.7868/S0869803115010178
- Wayne M.L., Soundararajan U., Harshman L.G. Environmental stress and reproduction in Drosophila melanogaster: starvation resistance, ovariole numbers and early age egg production. BMC Evol. Biol. 2006;6:57. https://doi.org/10.1186/1471-2148-6-57
- Landis G., Shen J., Tower J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging. 2012;4(11):768–789. https://doi.org/10.18632/aging.100499
- Belyi A.A., Alekseev A.A., Fedintsev A.Y. et al. The resistance of Drosophila melanogaster to oxidative, genotoxic, proteotoxic, osmotic stress, infection, and starvation depends on age according to the stress factor. Antioxidants. 2020;9:1239. https://doi.org/10.3390/antiox9121239
- Pappalardo A.M., Ferrito V., Biscotti M.A. et al. Transposable elements and stress in vertebrates: An overview. Int. J. Mol. Sci. 2021;22(4):1970. https://doi.org/10.3390/ijms22041970
- Czech B., Preall J.B., McGinn J., Hannon G.J. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell. 2013;50:749–761. https://doi.org/ 10.1016/j.molcel.2013.04.007
- Russell S.J., LaMarre J. Transposons and the PIWI pathway: genome defense in gametes and embryos. Reproduction. 2018;156(4):R111–R124. https://doi.org/10.1530/REP-18-0218
- Ross R.J., Weiner M.M., Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;505:353–359. https://doi.org/10.1038/nature12987
- Jones B.C., Wood J.G., Chang C. et al. A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat. Commun. 2016;7:13856. https://doi.org/10.1038/ncomms13856
- Zuo L., Wang Z., Tan Y. et al. piRNAs and their functions in the brain. Int. J. Hum. Genet. 2016;16:53–60. https://doi.org/10.1080/09723757.2016.11886278
- Perera B.P.U., Tsai Z. T.-Y., Colwell M. et al. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics. 2019;14(5):504–521. https://doi.org/10.1080/15592294.2019.1600389
- Lin K.Y., Wang W.D., Lin C.H. et al. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat. Commun. 2020;11:3147. https://doi.org/10.1038/s41467-020-16858-6
- Rajasethupathy P., Antonov I., Sheridan. R et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012;149:693–707. https://doi.org/10.1016/j.cell.2012.02.057
- Phay M., Kim H.H., Yoo S. Analysis of piRNA-like small non-coding RNAs present in axons of adult sensory neurons. Mol. Neurobiol. 2018;55:483–494. https://doi.org/10.1007/s12035-016-0340-2
- Praher D., Zimmermann B., Genikhovich G. et al. Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis. RNA Biol. 2017;14:1727–1741. https://doi.org/10.1080/15476286.2017.1349048
- Ma Z., Wang H., Cai Y. et al. Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila. eLife. 2018;7:e35368. https://doi.org/10.7554/eLife.35368
- Heestand B., Simon M., Frenk S. et al. Transgenerational sterility of Piwi mutants represents a dynamic form of adult reproductive diapause. Cell Rep. 2018;23:156–171. https://doi.org/10.1016/j.celrep.2018.03.015
- Yushkova E. Interaction effect of mutations in the genes (piwi and aub) of the Argonaute family and hobo transposons on the integral survival parameters of Drosophila melanogaster. Biogerontology. 2024;5:131–146. https://doi.org/10.1007/s10522-023-10062-x
- Brennecke J., Aravin A.A., Stark A. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128:1089–1103. https://doi.org/10.1016/j.cell.2007.01.043
- Gainetdinov I., Colpan C., Arif A, Cecchini K., Zamore P. A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals. Mol. Cell. 2018;71:775–790. https://doi.org/10.1016/j.molcel.2018.08.007
- van Lopik J., Alizada A., Trapotsi M.-A. et al. Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus. Nat. Commun. 2023;14:7337. https://doi.org/10.1038/s41467-023-42787-1
- Senti K.A., Jurczak D., Sachidanandam R., Brennecke J. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Genes Dev. 2015;29(16):1747–1762. https://doi.org/10.1101/gad.267252.115
Supplementary files
