Self-induced displacement and rotation of a melting ice disk on the still water surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of an experimental investigation and physical modeling of self-induced displacement and rotation of an ice disk on the still water surface are presented. The dependence of the ice specimen rotation velocity on the water salinity and the depth of the experimental container is measured. It is shown that the reason for observable motions over the still water surface is the cellular convective flow generated by the ice melting process.

Full Text

Restricted Access

About the authors

A. V. Kistovich

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: tanya75.06@mail.ru
Russian Federation, Moscow

T. O. Chaplina

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: tanya75.06@mail.ru
Russian Federation, Moscow

References

  1. Nordell B., Westerstrom G. Large rotating ice discs on ice-covered rivers // Weather. 1997. № 209. P. 205–209.
  2. Kouraev A.V., Zakharova E.A., Rémy F., Kostianoy A.G., Shimaraev M.N., Hall N.M.J., Zdorovennov R.E., Suknev A.Y. Giant ice rings on lakes and field observations of lens-like eddies in the Middle Baikal (2016–2017) // Limnology and Oceanography. 2019. № 64(6). P. 2738–2754.
  3. Dorbolo S., Adami N., Dubois C., Caps H., Vandewalle N., Darbois-Texier B. Rotation of melting ice disks due to melt fluid flow // Physical Review E. 2016. № 93(3). P. 1–5
  4. Айзерман М.А. Классическая механика. М.: Наука, 1980. 368 с.
  5. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. М.: Наука, 1986. 736 с.
  6. Bushuk M., Holland D.M., Stanton T.P., Stern A., Gray C. Ice Scallops: A Laboratory Investigation of the Ice-Water Interface // J. Fluid. Mech. 2019. P. 942–976.
  7. Shlien D.J. Transition of the axisymmetric starting plume cap // PhFl. 1978. V. 21. № 12. P. 2154–2158.
  8. Shlien D.J. Relations between point source buoyant convection phenomena// PhFl 1979. V. 22, № 12, P. 2277–2283.
  9. Morton B.R., Taylor G., Turner J.S. Turbulent gravitational convection from maintained and instantaneous sources // Proc. Roy. Soc. Ser. A. 1956. V. A234. № 1196, P. 1–23.
  10. Scorer R.S. Experiments on convection of isolated masses of buoyant fluid // J. Fluid. Mech. 1957. V. 2. P. 583–594.
  11. https://i.ytimg.com/vi/RUc-xRyBtSU/maxresdefault.jpg
  12. http://ecosystema.ru/Географический словарь/Полигонные грунты
  13. Bagnold R.A., Barndorff-Nelsen O. The pattern of natural size distributions // Sedimentology. 1980. V. 27, Issue 2, P. 199–207.
  14. White D.B. The planforms and onset of convection with temperature dependent viscosity // J. Fluid. Mech. 1988, V. 191. P. 247–268.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Flow under an ice disk (d = 1.0 cm, hd = 0.3 cm, t = 1, 10 s).

Download (630KB)
3. Fig. 2. Time dependence of the angular position of ice blocks (d = 2 cm, h = 1 cm) at different depths of fresh (a) and salt (b) water: 1–4 – H = 5, 10, 15, 20 cm.

Download (135KB)
4. Fig. 3. (a) Computer simulation of a convective parquet formed by identical rising jets. (b) Photograph of a real convective structure in a thin layer of liquid [11] (top view).

Download (355KB)
5. Fig. 4. The distribution function of the number of sides of a cell n – the Weibull distribution (2.1).

Download (107KB)
6. Fig. 5. The distribution function of the cell perimeter P is a normal distribution with a shift (2.2).

Download (59KB)
7. Fig. 6. The cell area distribution function: a) results of statistical processing of the ensemble of convective patterns with discretization of the area step by 0.01 in the area range S ∈[0, 1.5], b) part of Fig. 6 (a) in the area range S ∈[0, 0.12] (dark circles) and approximation of this distribution by the Weibull function Weibull (a, b, S) for a = 5.7, b = 2.2 (dashed curve).

Download (154KB)
8. Fig. 7. A separate picture of convective cells at N = 4.

Download (68KB)
9. Fig. 8. A separate picture of convective cells at N = 5.

Download (76KB)

Copyright (c) 2024 Russian Academy of Sciences