Numerical Simulation of Tollmien-Schlichting Wave Generation by Flow Turbulence

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The disturbances generated by external turbulence in the shear layer on a flat plate suddenly set in motion are found. As the initial conditions, turbulent flow found using direct numerical simulation of the development of isotropic homogeneous turbulence is used. The solution obtained models laminar-turbulent transition in the boundary layer on a flat plate under relatively low free-stream turbulence when the transition is caused by Tollmien-Schlichting waves. The solution makes it possible to describe the process of generating various disturbances, namely, low-frequency streaky structures and instability waves and also their development in the initial stage of laminar-turbulent transition. Based on the processing of the obtained results, a simple model is proposed that relates the spectra of instability waves in the boundary layer and turbulent pulsations in free-stream flow. The dependences of the initial amplitude of instability waves and their critical amplification factors (N-factors) on the degree of flow turbulence are also obtained.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Ustinov

Zhukovski Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MPhTI)

Хат алмасуға жауапты Автор.
Email: umax1961@gmail.com
Ресей, Zhukovsky, Moscow oblast; Dolgoprudny, Moscow oblast

Әдебиет тізімі

  1. Ustinov M.V., Kachanov Y.S Comparison of amplitude method of roughness-induced swept-wing transition prediction with experiment // Physics of Fluids. 2021. V. 33 (9). 094105.
  2. Чувахов П.В., Федоров А.В. Статистическая модель начальной стадии ламинарно-турбулентного перехода, вызванного атмосферными микрочастицами// Тез.докл. 13 Всероссийский съезд по проблемам теоретической и прикладной механики, Санкт-Петербург, 21–25 августа 2023 г.
  3. Goldstein M.E. The evolution of Tollmien–Schlichting waves near the leading edge//J. Fluid Mech. 1983. V.127. P. 59–81.
  4. Качанов Ю.С., Козлов В.В., Левченко В.Я. Возникновение волны Толлмина–Шлихтинга в пограничном слое при воздействии внешних возмущений//Изв. АН СССР. МЖГ. 1978. С. 85–94.
  5. Жигулев В.Н, Федоров А.В. Исследованиевозбуждения волн Толлмина–Шлихтинга. Препринт СО АН СССР, 1982. С 27–33.
  6. Жигулев В.Н., Тумин А.М. Возникновение турбулентности. Динамическая теория возбуждения и развития неустойчивостей в пограничных слоях. Новосибирск: Наука, 1987. 280 с.
  7. Устинов М.В. Генерация волн Толлмина–Шлихтинга турбулентностью потока// Изв. РАН. МЖГ. 2014. № 4. С. 58–72
  8. Mack L.M. Transition prediction and linear stability theory // AGARD Conf. proc. CP-224. 1977. P. 1/1–22.
  9. Parekh D.E., Pulin P., Wlezin R.W. Boundary layer receptivity to convected gusts and sound //Boundary Layer Stability and Transition to Turbulence FED-114/ Ed. C.L. Reda et al. N.Y.: ASME, 1991. P. 69–76.
  10. Buter T.A., Reed H.L. Numerical investigations of receptivity to freestream vorticity // AIAA Paper.1993. № 93–0073.
  11. Leib S.J., Wundrow D.W., Goldstein M.E. Effects of free-stream turbulence and other vortical disturbances on a laminar boundary layer // J. Fluid Mech. 1999. V. 380. P. 169–203.
  12. Устинов М.В. Восприимчивость пограничного слоя на плоской пластине к турбулентности набегающего потока//Изв. РАН МЖГ. 2003. № 3. С. 56–68
  13. Устинов М.В. Численное моделирование развития полосчатой структуры в пограничном слое при повышенной степени турбулентности потока//Изв. РАН МЖГ. 2004. № 2. С. 103–119
  14. Rozhdestvensky B.L., Simakin I.N. Secondary flows in a plane channel: their relationship and comparison with turbulent flows// J. Fluid Mech.1987. P. 261–289.
  15. Гуляев А.Н., Козлов В.Е., Кузнецов В.Р. Проникновение трехмерных низкочастотных пульсаций скорости внешнего потока в ламинарный пограничный слой на плоской пластине// Труды ЦИАМ.1991. № 1287.С. 197–236.
  16. Устинов М.В. Численное моделирование ламинарно-турбулентного перехода в пограничном слое при повышенной степени турбулентности потока//Изв. РАН МЖГ. 2006. № 6. С. 77–93
  17. Рождественский Б.Л., Стойнов М.И. Алгоритмы интегрирования уравнений Навье–Стокса, имеющие аналоги законам сохранения массы, импульса и энергии. Препринт № 119 ИПМ им. М.В. Келдыша. 1987. 28 с.
  18. Устинов М.В. Исследование субгармонического перехода в плоском канале методом прямого численного моделирования// Изв. АНСССРМЖГ. 1993. № 3. C. 46–53
  19. Westin K.J.A., Boiko A.V., Klingmann B.G., Kozlov V.V., Alfredsson P.H. Experiments in a boundary layer subjected to freestream turbulence. Pt I: Boundary layer structure and receptivity// J. Fluid Mech. 1994. V. 281. P. 193–218.
  20. Matsubara M., Alfredsson P.H. Disturbance growth in boundary layers subjected to free-stream turbulence// J. Fluid Mech. 2001. V. 430. P. 149–168.
  21. Филиппов В.М. Экспериментальное исследование влияния градиента давления на переход ламинарного пограничного слоя в турбулентный// Уч. зап. ЦАГИ. 1975.Т. 6. № 6. С. 114–118.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Rhys. 1. Velocity pulsation spectra in initial turbulent fluids: 1-Sa[u2], 2-Sb[v2], 3-Sa [v2], 4-Sb[u2], 5-Kolmogorov-Obukhov law, S~k-5/3.

Жүктеу (141KB)
3. Fig. 2 Spectra of pulsations of the longitudinal component of velocity in the shear layer along the longitudinal (a), transverse (b) and two-dimensional spectra at t=8.4x105 (c). Figures (1-6) correspond to t=(2,4,6,8, b 10) x105.

Жүктеу (446KB)
4. Fig. 3. Dependences of the rms amplitudes of total (solid lines), long-period (dashed) and short-period (dotted) disturbances in the shear layer on time (a). Similar dependences for long-period disturbances on a double logarithmic scale (b). (1-3) correspond to Tu = 0.1, 0.2 and 0.5%.

Жүктеу (165KB)
5. Fig. 4. The dependences of the T-normalized amplitudes of long-period, short-period, and total velocity perturbations in the shear layer on time (a). The notation is similar to Fig. 3. Comparison of the amplitudes of these types of disturbances obtained by solving the complete (1) and linearized (2) Navier–Stokes equations for the regime δ=1, Tu=0.2% (b).

Жүктеу (138KB)
6. Fig. 5. Comparison of the velocity perturbation profile for harmonics with m=55, n=4 at t=6.3×105 (solid lines), with an eigenfunction of the Orr–Sommerfeld equation (dashed).

Жүктеу (76KB)
7. Fig. 6. Dependences of the RMS amplitude of the projection of the harmonic of velocity disturbances on the eigenfunction of the O–Z equation for modes with δ=1 (a) and δ=3 (b) (solid lines). T–wave rise curves (dashed). (1-3) correspond to Tu= 0.1, 0.2 and 0.5%.

Жүктеу (164KB)
8. 7. Dependences of the RMS amplitude of the projection of the harmonic of velocity disturbances on the eigenfunction of the equation O–Z (1), the wave T–W (2) and the intermediate wave (3) on time for solution at δ=1, Tu=0.2%, d=0.375D. (4) is the theoretical curve of the T–wave rise.

Жүктеу (87KB)
9. 8. Dependences of the amplitude of the T–wave at the neutral point (a) and the N-transition factor (b) on the degree of initial turbulence. (1, 2) correspond to δ=1 and 3.

Жүктеу (96KB)
10. Fig. 9. Isolines ln(rb) in the (α, β) plane calculated according to (2.4) for modes δ=1, Tu=0.1% (a), δ=1, Tu=0.5% (b), δ=3, Tu=0.1% (c), δ=3, Tu=0.5% (g).

Жүктеу (396KB)

© Russian Academy of Sciences, 2024