Study of resistance to impact penetration of auxetic metamaterials at various angles of rotation of their internal cellular structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The resistance of auxetic metamaterials based on a cell in the form of a concave hexagon (with a negative Poisson’s ratio) to penetration by a rigid spherical striker along the normal was experimentally studied. Samples of metamaterials with a chiral and non-chiral internal structure were made on a 3D printer from flexible thermoplastic polyurethane (TPU 95A plastic) and rigid e-PLA plastic. For all four types of metamaterials, samples were prepared whose internal structure differed in the rotation angle (0, 30, 60 or 90 degrees) relative to the vertical axis. The samples were compared by their ability to reduce the kinetic energy of strikers at a speed of about 190 m/s at a temperature of 16°C. It was found that auxetics made of thermoplastic polyurethane with a non-chiral structure rotated by 90 degrees are the most effective in terms of resistance to striker penetration. The dependence of the striker deviation on exit from the samples (up or down) on the direction of rotation of the internal structure of the sample at an angle from 0 to 90 degrees clockwise or counterclockwise, respectively, was revealed.

About the authors

S. Yu. Ivanova

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Moscow, Russia

K. Yu. Osipenko

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Moscow, Russia

N. V. Banichuk

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Moscow, Russia

D. S. Lisovenko

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: lisovenk@ipmnet.ru
Moscow, Russia

References

  1. Lim T.-C. Auxetic materials and structures. Singapore: Springer, 2015. https://doi.org/10.1007/978-981-287-275-3
  2. Kolken H.M.A., Zadpoor A.A. Auxetic mechanical metamaterials // RSC Adv. 2017. V. 7. № 9. P. 5111–5129. https://doi.org/10.1039/C6RA27333E
  3. Ren X., Das R., Tran P. et al. Auxetic metamaterials and structures: A review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
  4. Wu W., Hu W., Qian G. et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review // Mater. Des. 2019. V. 180. P. 107950. https://doi.org/10.1016/j.matdes.2019.107950
  5. Gorodtsov V.A., Lisovenko D.S. Auxetics among materials with cubic anisotropy // Mech. Solids. 2020. V. 55. № 4. P. 461–474. https://doi.org/10.3103/S0025654420040044
  6. Shitikova M.V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A Review // Mech. Solids. 2022. V. 57. № 1. P. 1–33. https://doi.org/10.3103/S0025654422010022
  7. Novak N., Vesenjak M., Ren Z. Auxetic cellular materials – a review // Strojniški vestnik – Journal of Mechanical Engineering. 2016. V. 62. № 9. P. 485–493. https://doi.org/10.5545/sv-jme.2016.3656
  8. Kelkar P.U., Kim H.S., Cho K.-H. et. al. Cellular auxetic structures for mechanical metamaterials: A review // Sensors. 2020. V. 20. № 11. P. 3132. https://doi.org/10.3390/s20113132
  9. Joseph A., Manesh V., Harursampath D. On the application of additive manufacturing methods for auxetic structures: A review // Adv. Manuf. 2021. V. 9. № 3. P. 342–368. https://doi.org/10.1007/s40436-021-00357-y
  10. Ivanova S.Yu., Osipenko K.Yu., Kuznetsov V. A., Solovyov N.G., Banichuk N.V., Lisovenko D.S. Experimental investigation of the properties of auxetic and non-auxetic metamaterials made of metal during penetration of rigid strikers // Mech. Solids. 2023. V. 58. № 2. P. 524–528. https://doi.org/10.3103/S0025654422601616
  11. Ivanova S.Yu., Osipenko K.Yu., Demin A.I., Banichuk N.V., Lisovenko D.S. Studying the properties of metamaterials with a negative Poisson’s ratio when punched by a rigid impactor // Mech. Solids. 2023. V. 58. № 5. P. 1536–1544. https://doi.org/10.3103/S0025654423600897
  12. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Experimental study of the properties of metamaterials based on PLA plastic when perforated by a rigid striker // Mech. Solids. 2024. V. 59. № 4. P. 207–215. https://doi.org/10.1134/S0025654424604695
  13. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Investigation of the effect of a viscous filler on the punching process of auxetic and non-auxetic metamaterials // Mech. Solids. 2024. V. 59. № 7. P. 3727–3734. https://doi.org/10.1134/S0025654424606633
  14. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Investigation of the effect of a viscous filler on the mechanical properties of metamaterials with negative and positive Poisson’s ratio when punching with a rigid impactor // Vestn. Chuvash. Gos. Ped. Univ. im. I.Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2024. V. 4. № 62. P. 62–75. https://doi.org/10.37972/chgpu.2024.62.4.005
  15. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Temperature influence of metamaterials based on flexible TPU 95A plastic on resistance to penetration by a rigid striker // Mech. Solids. 2025. № 1. P. 128–135. https://doi.org/10.1134/S0025654424606797
  16. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. On the effect of the viscous filler on the impact resistance of flexible metamaterials with auxetic properties // Mech. Solids. 2025. № 2. P. 267–278. https://doi.org/10.1134/S0025654425600175
  17. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. On the influence of chirality of the structure of auxetic metamaterials on the resistance to impact penetration // Mech. Solids. 2025. № 3. P. 1677–1684. http://dx.doi.org/10.1134/S0025654425601156
  18. Gao Y., Huang H. Energy absorption and gradient of hybrid honeycomb structure with negative Poisson’s ratio // Mech. Solids. 2022. V. 57. № 5. P. 1118–1133. https://doi.org/10.3103/S0025654422050053
  19. Хing Y., Deng B., Cao M. et al. Influence of structural and morphological variations in orthogonal trapezoidal aluminum honeycomb on quasi-static mechanical properties // Mech. Solids. 2024. V. 59. № 1. P. 445–458. https://doi.org/10.1134/S0025654423602550
  20. Skripnyak V.V., Chirkov M.O., Skripnyak V.A. Modeling the mechanical response of auxetic metamaterials to dynamic effects // Vestn. PNIPU. Mekh. 2021. № 2. P. 144–152. https://doi.org/10.15593/perm.mech/2021.2.13
  21. Imbalzano G., Tran P., Lee P.V.S. et. al. Influences of material and geometry in the performance of auxetic composite structure under blast loading // Appl. Mech. Mater. 2016. V. 846. P. 476–481. https://doi.org/10.4028/www.scientific.net/amm.846.476
  22. Zhao X., Gao Q., Wang L. et. al. Dynamic crushing of double-arrowed auxetic structure un-der impact loading // Mater. Des. 2018. V. 160. P. 527–537. https://doi.org/10.1016/j.matdes.2018.09.041
  23. Li C., Shen H.S., Wang H. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core // Nonlinear Dyn. 2020. V. 100. P. 3235–3252. https://doi.org/10.1007/s11071-020-05686-4
  24. Qiao J.X., Chen C.Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs // Inter. J. Impact Eng. 2015. V. 83. P. 47–58. https://doi.org/10.1016/j.ijimpeng.2015.04.005
  25. Novak N., Starcevic L., Vesenjak M. et. al. Blast response study of the sandwich composite panels with 3D chiral auxetic core // Compos. Struct. 2019. V. 210. P. 167–178. https://doi.org/10.1016/j.compstruct.2018.11.050
  26. Yu Y., Fu T., Wang S., Yang C. Dynamic response of novel sandwich structures with 3D sinusoid-parallel-hybrid honeycomb auxetic cores: The cores based on negative Poisson’s ratio of elastic jump // Eur. J. Mech. - A/Solids. 2025. V. 109. P. 105449. https://doi.org/10.1016/j.euromechsol.2024.105449
  27. Shen Z.Y., Wen Y.K., Shen L.Y. et. al. Dynamic response and energy absorption characteristics of auxetic concave honeycomb pad for ballistic helmet under shock wave and bullet impact // Mech. Solids. 2024. V. 59. № 5. P. 3050–3067. https://doi.org/10.1134/S0025654424605159
  28. Jiang Q., Hao B., Chen G. et. al. Analysis of the penetration ability of exponential bullets on TPMS structures with variable density // Mech. Solids. 2024. V. 59. № 5. P. 3198–3211. https://doi.org/10.1134/S0025654424605640
  29. Usta F., Türkmen H.S., Scarpa F. High-velocity impact resistance of doubly curved sandwich panels with re-entrant honeycomb and foam core // Int. J. Impact Eng. 2022. V. 165. P. 104230. https://doi.org/10.1016/j.ijimpeng.2022.104230

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences