The effect of atmospheric oxide thermodesorption on negative-ion atomic and cluster sputtering of silicon single crystal by cesium ions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The temperature dependences of the sputtering of negative ions of silicon-oxygen clusters were studied for the first time by the method of ultrahigh-vacuum mass spectrometry of secondary ions. In the temperature range of 100–200°C, an increase is observed, then after a maximum at 200°C to 800°C, the yield of negative-ion clusters of suboxide and silicon dioxide decreases exponentially. In this case, the yield of silicon oxide clusters stops, while yields of suboxide are still observed. The yields of negative oxygen ions correlate with the temperature dependences of the yield of silicon–oxygen clusters and show the presence of oxygen adsorbed on the surface and dissolved in the bulk. In this work, for the first time, to assess the contribution of these processes, a signal from negatively charged silicon dimers, which are an adsorbed silicon atom on a silicon atom at a substrate lattice site, was used. We have discovered the temperature dependence of thermal desorption of negatively charged silicon trimers. In our opinion, this signal represents a decay negative cluster ion of a surface defect center, the so-called Pb-center, of an adsorbed silicon tetramer — three silicon atoms on surface, closed at the top by a silicon addition atom.

Sobre autores

B. Atabaev

Arifov Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences

Autor responsável pela correspondência
Email: atabaev.bg@gmail.com
Uzbequistão, Tashkent

R. Djabbarganov

Arifov Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences

Email: atabaev.bg@gmail.com
Uzbequistão, Tashkent

A. Khalmatov

Arifov Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences

Email: halmatov281285@mail.ru
Uzbequistão, Tashkent

A. Rakhmatov

“Photon” Company, Uzeltekhsanoat

Email: atabaev.bg@gmail.com
Uzbequistão, Tashkent

A. Kamardin

Specialized Design Bureau “Academpribor”, Uzbekistan Academy of Sciences

Email: atabaev.bg@gmail.com
Uzbequistão, Tashkent

Bibliografia

  1. Johnson K., Engel T. // Phys. Rev. Lett. 1992. V. 69. P. 339. https://doi.org/10.1103/PhysRevLett.69.339
  2. Johnson K.E., Wu P.K., Sander M., Engel T. // Surf. Sci. 1993. V. 290. P. 213. https://doi.org/10.1016/0039-6028(93)90705-O
  3. Hibino H., Uematsu M., Watanabe Y.J. // Appl. Phys. 2006. V. 100. P. 113519. https://doi.org/10.1063/1.2397283
  4. Xue K., Xu J.B., Ho H.P. // Nanotechnology. 2007. V. 18. P. 485709. https://www.doi.org/10.1088/0957-4484/18/48/485709
  5. Iraji-zad A., Taghavinia N., Ahadian M., Mashaei A. // Semicond. Sci. Technol. 2000. V. 15. P. 160. https://www.doi.org/10.1088/0268-1242/15/2/314
  6. Gallet J.J., Silly M.G., el Kazzi M., Bornel F., Sirotti F., Rochet F. // Sci. Rep. 2017. V. 7. P. 1. https://www.doi.org/10.1038/s41598-017-14532-4
  7. Engstrom J.R., Bonser D.J., Nelson M.M., Engel T. // Surf. Sci. 1991. V. 256. P. 317. https://doi.org/10.1016/0039-6028(91)90875-S
  8. Nimatov S.J., Garafutdinova I.A., Atabaev B.G., Rumi D.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2001. V. 16. P. 775.
  9. Atabaev B.G. Gaipov S. Sharopov U.B. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2007. V 10. P. 52.
  10. Abdullaeva M.K., Atabaev B.G., Djabbarganov R. // Nucl. Instrum. Methods Phys. Res. B. 1991. V. 62. P. 43. https://doi.org/10.1016/0168-583X(91)95925-4
  11. Atabaev I., Tin Ch.-Ch., Atabaev B., Saliev T.M., Bakhranov E.N., Matchanov N., Lutpullaev S.L., Zhang J., Saidkhanova N.G., Yuzikaeva F.R., Nuritdinov I., Islomov A., Amanov M.Z., Rusli E., Kumta A. // Mater. Sci. Forum. 2009. V. 600–603. P. 457. https://doi.org/10.4028/www.scientific.net/MSF.600-603.457
  12. Rumi D.S., Nimatov S.J., Garafutdinova I.A., Atabaev B.G. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2004. V. 4. P. 82.
  13. Atabaev B., Gaipov S.G., Boltaev N.N., Khozhiev Sh.T. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2001. V. 16. P. 737. https://www.elibrary.ru/item.asp?id=27760879
  14. Атабаев Б.Г., Джаббарганов Р., Ахмаджонова М.Х., Назаркулова К.У. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2021. № 3. C. 57. https://www.doi.org/10.31857/S1028096021030031
  15. Мустафаев Г.А., Оракова М.М., Нагаплежева Р.Р. Исследование технологии очистки поверхности пластин кремния в HF-растворах. // Сборник материалов IV Международной научно-практической конференции “Актуальные проблемы науки и образования в условиях современных вызовов”, Москва, 2021. C. 105.
  16. US7452810B2 (United States). Ko K.o, Won J., Um H., Jung J., Park S. Samsung Electronics Co Ltd. // 2008.11.18.
  17. US20130316533A1 (United States). Zheng B., Sundarrajan A., Fu X. Applied Materials Inc. // 2014.07.08.
  18. US5510277A (United States). Cunningham J.E., Goossen K.W., Jan W.Y., Walker J.A. AT&T Corp. // 1996.04.23
  19. IAP 05720 (Узбекистан). Способ дополнительной очистки поверхности монокристаллов кремния, Рысбаев А.С., Хужаниязов Ж. Б., Рахимов А.М., Бекпулатов И.Р. // 30.11.2018.
  20. Джаббарганов Р., Атабаев Б.Г., Исаханов З.А., Шаропов У.Б. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2019. № 7. C. 87. https://www.doi.org/10.1134/S0207352819070047

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024