Three-dimensional cell models for studying tumor–immune interactions and testing immunotherapeutic drugs

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the most promising approaches to cancer treatment is immunotherapy. Suppression of immune checkpoints in tumor tissue (anti-CTLA4, anti-PD1) using monoclonal antibodies has increased the overall survival of patients with some forms of skin melanoma and lung cancer. However, the percentage of patients responding to treatment varies from 20% to 40% depending on the type of cancer and the expression of target molecules by the tumor. The main source of failure of immunotherapy is the tumor microenvironment, which affects both tumor cells and immune cells, causing them to adapt to immunotherapeutic drugs. It is known that the architecture and cellular composition of the microenvironment act on various tumor parameters, promoting the recruitment of immunosuppressive cells into the tumor tissue, as well as the expression of checkpoint inhibitors, such as PD-L1, by tumor cells. Therefore, the complex composition of the tumor microenvironment must be taken into account when searching for new therapies and stratifying patients who may respond to immunotherapy. Therefore, in immunooncological studies, it is necessary to use three-dimensional cellular models that more fully reflect the architecture and cellular composition of the tumor. In this review, we evaluate three-dimensional cell models as tools for research in the field of immuno-oncology, as well as for personalized treatment selection, the search for new targets, and the optimization of existing cancer immunotherapies.

Full Text

Restricted Access

About the authors

Svetlana Yu. Filippova

National medical research centre for Oncology

Author for correspondence.
Email: filsv@yandex.ru
ORCID iD: 0000-0002-4558-5896
SPIN-code: 9586-2785

Research Associate

Russian Federation, 14 liniya street, 63, 344037 Rostov-on-Don

Sophia V. Timofeeva

National medical research centre for Oncology

Email: timofeeva.sophia@gmail.com
ORCID iD: 0000-0002-5945-5961
SPIN-code: 5362-1915

Research Associate

Russian Federation, 14 liniya street, 63, 344037 Rostov-on-Don

Irina V. Mezhevova

National medical research centre for Oncology

Email: mezhevova88@gmail.com
ORCID iD: 0000-0002-7902-7278
SPIN-code: 3367-1741

Junior Research Associate

Russian Federation, 14 liniya street, 63, 344037 Rostov-on-Don

Elena V. Shalashnaya

National medical research centre for Oncology

Email: rnioi@list.ru
ORCID iD: 0000-0001-7742-4918
SPIN-code: 2752-0907

Cand.  Sci. (Bio.)

Russian Federation, 14 liniya street, 63, 344037 Rostov-on-Don

Lyudmila Ya. Rozenko

National medical research centre for Oncology

Email: onko-sekretar@mail.ru
ORCID iD: 0000-0001-7032-8595
SPIN-code: 8879-2251

MD, Dr. Sci. (Med.), Professor

Russian Federation, 14 liniya street, 63, 344037 Rostov-on-Don

Aleksandr V. Shaposhnikov

National medical research centre for Oncology

Email: onko-sekretar@mail.ru
ORCID iD: 0000-0001-6881-2281
SPIN-code: 8756-9438

MD, Dr. Sci. (Med.), Professor

Russian Federation, 14 liniya street, 63, 344037 Rostov-on-Don

Inna A. Novikova

National medical research centre for Oncology

Email: novikovainna@yahoo.com
ORCID iD: 0000-0002-6496-9641
SPIN-code: 4810-2424

MD, Dr. Sci. (Med.)

Russian Federation, 14 liniya street, 63, 344037 Rostov-on-Don

References

  1. Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Letters. 2015;368(1):7–13. doi: 10.1016/j.canlet.2015.07.039
  2. Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Advances in experimental medicine and biology. 2020;1224:117–140. doi: 10.1007/978-3-030-35723-8_8
  3. Wolf D, Sopper S, Pircher A, Gast G, Wolf AM. Treg(s) in cancer: friends or foe? Journal of cellular physiology. 2015;230(11):2598–2605. doi: 10.1002/jcp.25016
  4. Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Frontiers in pharmacology. 2017;8:561. doi: 10.3389/fphar.2017.00561
  5. Feng R, Zhao H, Xu J, Shen C. CD47: the next checkpoint target for cancer immunotherapy. Critical reviews in oncology/hematology. 2020;152. doi: 10.1016/j.critrevonc.2020.103014
  6. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nature reviews. Drug discovery. 2019;18:99–115. doi: 10.1038/s41573-018-0004-1
  7. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. doi: 10.1016/j.immuni.2014.06.010
  8. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi: 10.1038/nature07205
  9. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery. 2018;8:1069–1086. doi: 10.1158/2159-8290.CD-18-0367
  10. Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor necrosis factor alpha blockade: an opportunity to tackle breast cancer. Frontiers in oncology. 2020;10:584. doi: 10.3389/fonc.2020.00584
  11. Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity. 2019;50:1007–1023. doi: 10.1016/j.immuni.2019.03.026
  12. Wente MN, Keane MP, Burdick MD, et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Letters. 2006;241:221–227. doi: 10.1016/j.canlet.2005.10.041
  13. Tanabe Y, Sasaki S, Mukaida N, Baba T. Blockade of the chemokine receptor, CCR5, reduces the growth of orthotopically injected colon cancer cells via limiting cancer-associated fibroblast accumulation. Oncotarget. 2016;7:48335–48345. doi: 10.18632/oncotarget.10227
  14. Igarashi Y, Sasada T. Cancer vaccines: toward the next breakthrough in cancer immunotherapy. Journal of immunology research. 2020;2020. doi: 10.1155/2020/5825401
  15. Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nature reviews. Drug discovery. 2020;19:635–652. doi: 10.1038/s41573-020-0074-8
  16. Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. Journal of translational medicine. 2013;11. doi: 10.1186/1479-5876-11-83
  17. Timofeeva SV, Sitkovskaya AO, Novikova IA, et al. Recent achievements in CAR-T cell immunotherapy for glioblastoma treatment. Medical Immunology (Russia)/Meditsinskaya Immunologiya. 2021;23(3):483–496. (In Russ). doi: 10.15789/1563-0625-RAI-2111
  18. Timofeeva SV, Filippova SYu, Sitkovskaya AO, et al. 3D Bioprinting of a Breast Tumor Model. Problems in Oncology (Voprosy Onkologii). 2023;69(1):67–73. (In Russ). doi: 10.37469/0507-3758-2023-69-1-67-73
  19. Teicher BA. In Vivo/Ex vivo and in situ assays used in Cancer Research: a brief review. Toxicologic Pathology. 2009;37(1):114–122. doi: 10.1177/0192623308329473
  20. Chuprin J, Buettner H, Seedhom MO, et al. Humanized mouse models for immuno-oncology research. Nature reviews. Clinical oncology. 2023;20(3):192–206. doi: 10.1038/s41571-022-00721-2
  21. Timofeeva SV, Shamova TV, Sitkovskaya AO. 3D Bioprinting of Tumor Microenvironment: Recent Achievements. Biology Bulletin Reviews (Zhurnal obshchei biologii). 2021;82(5):389–400. (In Russ). doi: 10.31857/S0044459621050067
  22. Filippova SYu, Sitkovskaya AO, Timofeeva SV, et al. Application of silicone coating to optimize the process of obtaining cellular spheroids by the hanging drop method. South Russian Journal of Cancer. 2022;3(3):15–23. (In Russ). doi: 10.37748/2686-9039-2022-3-3-2
  23. Filippova SYu, Chembarova TV, Timofeeva SV, et al. Cultivation of cells in alginate drops as a high-performance method of obtaining cell spheroids for bioprinting. South Russian Journal of Cancer. 2023;4(2):47–55. (In Russ). doi: 10.37748/2686-9039-2023-4-2-5
  24. Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17:1–15. doi: 10.1016/j.neo.2014.12.004
  25. Jiang X, Seo YD, Chang JH, et al. Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment. Oncoimmunology. 2017;6:e1333210. doi: 10.1080/2162402X.2017.1333210
  26. Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–1988. doi: 10.1016/j.cell.2018.11.021
  27. Courau T, Bonnereau J, Chicoteau J, et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. Journal for Immunotherapy of Cancer. 2019;7(1):74. doi: 10.1186/s40425-019-0553-9
  28. Tsai S, McOlash L, Palen K, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 2018;18(1):335. doi: 10.1186/s12885-018-4238-4
  29. Yu L, Li Z, Mei H, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro. Clinical & translational immunology. 2021;10(2). doi: 10.1002/cti2.1248
  30. Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of Tumor-Reactive T cells by co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell. 2018;174(6):1586–1598. doi: 10.1016/j.cell.2018.07.009
  31. Meng Q, Xie S, Gray GK, et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. Journal for immunotherapy of cancer. 2021;9(11). doi: 10.1136/jitc-2021-003213
  32. Wu MH, Huang SB, Lee GB. Microfluidic cell culture systems for drug research. Lab on a Chip. 2010;10(8):939. doi: 10.1039/b921695b
  33. Xie H, Appelt JW, Jenkins RW. Going with the flow: modeling the tumor microenvironment using microfluidic technology. Cancers. 2021;13(23):6052. doi: 10.3390/cancers13236052
  34. Liu H, Wang Y, Wang H, et al. A Droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Advanced science. 2020;7(11):1903739. doi: 10.1002/advs.201903739
  35. Nguyen M, De Ninno A, Mencattini A, et al. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments. Cell reports. 2018;25:3884–3893. doi: 10.1016/j.celrep.2018.12.015
  36. Aref AR, Campisi M, Ivanova E, et al. 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab on a Chip. 2018;18:3129–3143. doi: 10.1039/C8LC00322J
  37. Jenkins RW, Aref AR, Lizotte PH, et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer discovery. 2018;8(2):196–215. doi: 10.1158/2159-8290.CD-17-0833
  38. Moore N, Doty D, Zielstorff M, et al. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions. Lab on a Chip. 2018;18:1844–1858. doi: 10.1039/C8LC00256H
  39. Zervantonakis IK, Hughes-Alford SK, Charest JL, et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proceedings of the National Academy of Sciences of the USA. 2012;109:13515–13520. doi: 10.1073/pnas.1210182109
  40. Agliari E, Biselli E, De Ninno A, et al. Cancer-driven dynamics of immune cells in a microfluidic environment. Scientific Reports. 2014;4:6639. doi: 10.1038/srep06639
  41. Biselli E, Agliari E, Barra A, et al. Organs on chip approach: a tool to evaluate cancer -immune cells interactions. Scientific Reports. 2017;7:12737. doi: 10.1038/s41598-017-13070-3
  42. Kitajima S, Ivanova E, Guo S, et al. Suppression of STING associated with Lkb1 loss in KRAS-driven lung cancer. Cancer Discovery. 2019;9:34–45. doi: 10.1158/2159-8290.CD-18-0689
  43. Businaro L, De Ninno A, Schiavoni G, et al. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab on a Chip. 2013;13:229–239. doi: 10.1039/c2lc40887b
  44. Gong Z, Huang L, Tang X, et al. Acoustic droplet printing tumor organoids for modeling bladder tumor immune microenvironment within a week. Advanced healthcare materials. 2021;10(22):2101312. doi: 10.1002/adhm.202101312
  45. Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication. 2022;14(3). doi: 10.1088/1758-5090/ac6d11
  46. Timofeeva SV, Filippova SYu, Sitkovskaya AO, et al. Bioresource collection of cell lines and primary tumors of the National Medical Research Center of Oncology of the Ministry of Health of Russia. Cardiovascular Therapy and Prevention. 2022;21(11):44–50. (In Russ). doi: 10.15829/1728-8800-2022-3397
  47. Kit OI, Timofeeva SV, Sitkovskaya AO, Novikova IA, Kolesnikov EN. The biobank of the National Medical Research Centre for Oncology as a resource for research in the field of personalized medicine: A review. Journal of Modern Oncology. 2022;24(1):6–11. (In Russ). doi: 10.26442/18151434.2022.1.201384
  48. Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Advances in biological regulation. 2020;75(100658). doi: 10.1016/j.jbior.2019.100658
  49. Tang M, Xie Q, Gimple RC, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell research. 2020;30(10):833–853. doi: 10.1038/s41422-020-0338-1
  50. Neufeld L, Yeini E, Reisman N, et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Science advances. 2021;7(34). doi: 10.1126/sciadv.abi9119

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic overview of 3D in vitro models and their application in studies of immune relationships in the tumor microenvironment.

Download (274KB)
3. Fig. 2. The process of creating three-dimensional cell cultures to model the relationship between tumor and immunity: a — obtaining a model based on multicellular spheroids co-cultivated with immune cells; b — growing organoids and tumoroids from tumor tissue in biogel followed by co-cultivation with autologous immune cells.

Download (395KB)
4. Fig. 3. Obtaining a three-dimensional model of the tumor microenvironment by connecting various components of the model on microfluidic systems (chips).

Download (268KB)
5. Fig. 4. Scheme for obtaining a model of the tumor microenvironment using 3D bioprinting.

Download (333KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 86496 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 80673 от 23.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies