Metabolic modulation of the biological effects of ionizing radiation and chemotherapy (review)
- Authors: Kurpeshev O.K.1, Pasov V.V.2, Pilipenko A.I.3, Ulasov G.A.3
-
Affiliations:
- Siberian Research Institute of Hyperthermia
- Tsyb Medical Radiological Research Centre — branch of the National Medical Research Radiological Centre
- Research and Production Enterprise "Istok" named after A.I. Shokin
- Issue: Vol 29, No 4 (2024)
- Pages: 328-343
- Section: Reviews
- Submitted: 16.08.2024
- Accepted: 10.02.2025
- Published: 25.12.2024
- URL: https://rjonco.com/1028-9984/article/view/635213
- DOI: https://doi.org/10.17816/onco635213
- ID: 635213
Cite item
Abstract
The review presents general information about the tumor cell microenvironment, its role in the development and progression of the malignant process and the results of antitumor therapy. The analysis showed that the development of methods for influencing the key metabolic targets of tumor cells and their microenvironment is a promising direction in experimental and clinical oncology. Some approaches to inducing metabolic modulation are considered: inhibitors of cellular pumps, hyperglycemia and hyperthermia. The therapeutic effect of the first two induction options is based on modulation of the acid-base balance (pH) of the tumor. The biological effect of hyperthermia is broader and directly depends on the severity and direction of the temperature-exposure mode of heating. Ultimately, such changes lead to an increase in the damaging effect of ionizing radiation and drugs on the tumor. Despite the fact that the composition of the microenvironment is heterogeneous and varies depending on the type of tumor, some specific cells and mediators are present in all its types. Therefore, the developed treatment methods can be universal for most tumor locations.
The literature analysis suggests that there is objective experimental and clinical evidence supporting the use of metabolic modulators in antitumor therapy.
Full Text

About the authors
Orazakhmet K. Kurpeshev
Siberian Research Institute of Hyperthermia
Author for correspondence.
Email: kurpeshev-ok@yandex.ru
ORCID iD: 0000-0003-3219-1596
SPIN-code: 2467-6046
MD, Dr. Sci. (Medicine)
Russian Federation, IskitimViktor V. Pasov
Tsyb Medical Radiological Research Centre — branch of the National Medical Research Radiological Centre
Email: pasov@mrrc.obninsk.ru
ORCID iD: 0000-0003-0387-1648
SPIN-code: 8778-2401
MD, Dr. Sci. (Medicine)
Russian Federation, ObninskAnatoly I. Pilipenko
Research and Production Enterprise "Istok" named after A.I. Shokin
Email: aipilipenko@istokmw.ru
Russian Federation, Fryazino
Gleb A. Ulasov
Research and Production Enterprise "Istok" named after A.I. Shokin
Email: gaulasov@istokmw.ru
Russian Federation, Fryazino
References
- Kushlinsky NE, Nemtsova MV. Molecular mechanisms of tumor growth. Medical news. 2014;9:29–37. EDN: TIKZDJ
- Chekhun VF, Berezhnaya NM. Physiological system of connective tissue and oncogenesis. III. Formation of resistance to chemotherapeutic drugs. Oncology. 2017;19(3):156–170. (In Russ.)
- Hoeckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–276. EDN: ISMMLN doi: 10.1093/jnci/93.4.266
- Horsman MR, Vaupel P. Pathophysiological Basis for the Formation of the Tumor Microenvironment. Front Oncol. 2016;6:66. doi: 10.3389/fonc.2016.00066.
- Jarosz-Biej M, Smolarczyk R, Cichon T, Kułach N. Tumor Microenvironment as A “Game Changer” in Cancer Radiotherapy. Int J Mol Sci. 2019;20:3212. EDN: DSLFZF doi: 10.3390/ijms20133212
- Korkaya H, Orsulic S. Editorial: The Tumor Microenvironment: Recent Advances and Novel Therapeutic Approaches. Front Cell Dev Biol. 2020;8:586176. EDN: TYLWRF doi: 10.3389/fcell.2020.586176
- Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 2020;18:59. EDN: XKVQZD doi: 10.1186/s12964-020-0530-4
- Riaz N, Morris L, Havel JJ, et al. The role of neoantigens in response to immune checkpoint blockade. Int Immunol. 2016;28(8):411–419.
- Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259–1271. doi: 10.1084/jem.20052494
- Lugade AA, Moran JP, Gerber SA, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174:7516–7523. doi: 10.4049/jimmunol.174.12.7516
- Arnold KM, Flynn NJ, Raben A, et al. The Impact of Radiation on the Tumor Microenvironment AP: Effect of Dose and Fractionation Schedules. Cancer Growth and Metastasis. 2018;11:1–17. doi: 10.1177/11790644187616
- Postow MA, Callahan MK, Barker CA, at al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–931. EDN: YCJKXV doi: 10.1056/NEJMoa1112824
- Oei AL, Korangath P, Mulka K, et al. Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. Int J Hyperthermia. 2019;36(Supl.1):47–63. EDN: XYTTDP doi: 10.1080/02656736.2019.1685686
- Song CW, Lee YJ, Griffin RJ, et al. Indirect tumor cell death after high-dose hypofractionated irradiation: implications for stereotactic body radiation therapy and stereotactic radiation surgery. Int J Radiat Oncol Biol Phys. 2015;93:166–172. doi: 10.1016/j.ijrobp.2015.05.016
- Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 R’s involved? Int J Radiat Oncol Biol Phys. 2014;88:254–262. doi: 10.1016/j.ijrobp.2013.07.022
- Golden EB, Formenti SC. Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology. 2014;3(1):e28133. doi: 10.4161/onci.28133
- Barcellos-Hoff MH. Remodeling of the irradiated tumor microenvironment: the fifth R of radiobiology. In: Tofilon PJ. and Camphausen K. eds. Increasing the Therapeutic Ratio of Radiotherapy. 2016:135–149.
- Steel GG, Mcmillan TJ, Peacock JH. Letter to the Editor. The 5Rs of Radiobiology. Int J Radiat Biol. 1989;56(6):1045–1048. doi: 10.1080/09553008914552491
- Osinsky SP. Microenvironment of tumor cells and tumor progression. Health of Ukraine. 2013. Oncology, Lecture. ZU_2012_Onko_5.qxd 12/18/2012. P. 34–36. Available from: https://health-ua.com/pics/pdf/ZU_2012_Onko_5-6/34-36.pdf
- Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer. 2019;18:63. doi: 10.1186/s12943-019-0983-5
- Romero-Garcia S, Lopez-Gonzalez JS, Báez-Viveros JL, et al. Tumor cell metabolism. An integral view. Cancer Biol Ther. 2011;12(11):939–948. doi: 10.4161/cbt.12.11.18140
- Pilborough AE, Lambert DW, Khurram SA. Extranodal extension in oral cancer: A role for the nodal microenvironment? J Oral Pathol Med. 2019;48:863–870. doi: 10.1111/jop.12870
- Gandhi P, Kaur M, Punia RS, et al. Myofibroblasts as important diagnostic and prognostic indicators of oral squamous cell carcinoma: An immunohistochemical study using alpha-smooth muscle actin antibody. J Oral Maxillofac Pathol. 2022;26:156–160. doi: 10.4103/jomfp.jomfp_389_20
- Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. doi: 10.1038/s41572-020-00224-3
- Chubenko VA, Moiseenko VM. Metabolic therapy and its prospects in the treatment of patients with malignant tumors. RosOncoWeb. Internet portal of the Russian Society of Clinical Oncology. 04/12/2022. (In Russ.) Available from: https://rosoncoweb.ru/news/oncology/2022/04/12/?ysclid=lilwy601vd14058594
- Oleinik EK, Shibaev MI, Ignatiev KS, et al. Tumor microenvironment: formation of an immune profile. Medical Immunology. 2020;22(2):207–220. EDN: QEZBBN doi: 10.15789/1563-0625-TMT-1909
- Bitsadze VO, Slukhanchuk EV, Solopova AG, et al. The role of the microenvironment in tumor growth and spread. Obstetrics, Gynecology and Reproduction. 2024;18(1):96–111. doi: 10.17749/2313-7347/ob.gyn.rep.2024.489
- Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013;4(1):66–83. doi: 10.7150/jca.5112
- Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. Front Oral Health. 2021;2:686337. doi: 10.3389/froh.2021.686337
- Ji X, Zhu X, Lu X. Effect of cancer-associated fibroblasts on radiosensitivity of cancer cells. Future Oncol. 2017;13:1537–1550.
- Boxberg M, Leising L, Steiger K, et al. Composition and Clinical Impact of the Immunologic Tumor Microenvironment in Oral Squamous Cell Carcinoma. J Immunol. 2019;202(1):278–291. doi: 10.4049/jimmunol.1800242
- Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic micro-environment of human tumors: a review. Cancer Res. 1989;49:6449–6465.
- Vladimirova LYu, Abramova NA, Shikhlyarova AI. Metabolic modulation of the antitumor effect of cytostatics in experiment and clinic. Journal of Malignant Tumors. 2014;3:42–47. doi: 10.18027/2224-5057-2014-3-42-47
- Song CW, Griffin R, Park HJ. Influence of Tumor pH on Therapeutic Response. In.: Cancer Drug Resistance, 2006. Chapter 2. P. 21–42.
- Bogdanov AA, Bogdanov AA, Moiseenko VM. Alkalization of the tumor microenvironment: are there any prospects as a target for therapy? Practical Oncology. 2022;23(3):143–159. doi: 10.31917/2303143
- Calcinotto A, Filipazzi P, Grioni M, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72:2746–2756. EDN: TWXAVT
- Choi ED, Li VV, Turkmenov AM, Derkembayeva JS, et al. Therapeutic properties of sodium bicarbonate (literature review). Ural Med J. 2020;191(8):55–60. EDN: FKXLKL doi: 10.25694/URMJ.2020.08.10
- Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 2003;66(7):1207–1218. doi: 10.1016/s0006-2952(03)00467-2
- Vaupel P, Piazena H, Notter M, et al. From Localized Mild Hyperthermia to Improved Tumor Oxygenation: Physiological Mechanisms Critically Involved in Oncologic Thermo-Radio-Immunotherapy. Cancers (Basel). 2023;15(5):1394. doi: 10.3390/cancers15051394
- Zhang J, Zhang Y, Mo F, et al. The Roles of HIF-1α in Radiosensitivity and Radiation-Induced Bystander Effects Under Hypoxia. Front Cell Dev Biol. 2021;9:637454. doi: 10.3389/fcell.2021.637454
- Ciaccia AG, Koumenis C, Denko N. The influence of tumor hypoxia on malignant progression. Tumor hypoxia: pathophysiology, clinical significance and therapeutic perspectives. Eds P. Vaupel, D. Kelleher. Stuttgart: Wiss enschaftlicheVerlagsgesellchaft. 1999:115–124.
- Fukumura D, Xu L, Chen Y, et al. Hypoxia and acidisis independently upregulate vascular endothelial grovth factor trauscription in brain tumors in vivo. Cancer Res. 2001;61:6020–6024.
- Pokorn E, Zicha D, Chaloupkov A, et al. Two Dynamic Morphotypes of Sarcoma Cells, Asymmetric Stellate and Triangle with Leading Lamella, are Related to Malignancy. Folia Biol (Praha). 2003;49(1):33–39.
- Volk T, Jähde E, Fortmeyer HP, et al. pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer. 1993;68(3):492–500. doi: 10.1038/bjc.1993.375
- Eaton AF, Merkulova M, Brown D. The H(+)-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol. 2021;320(3):C392-c414. doi: 10.1152/ajpcell.00442.2020
- Hu Y, Lou J, Jin Z, et al. Advances in research on the regulatory mechanism of NHE1 in tumors (Review). Oncol Lett. 2021;21(4):273. doi: 10.3892/ol.2021.12534
- McDonald PC, Chafe SC, Supuran CT, Dedhar S. Cancer Therapeutic Targeting of Hypoxia Induced Carbonic Anhydrase IX: From Bench to Bedside. Cancers (Basel). 2022;14(14):3297. doi: 10.3390/cancers14143297
- Wang BY, Zhang J, Wang JL, et al. Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res. 2015;34(1):85. doi: 10.1186/s13046-015-0194-x
- Zhang JL, Liu M, Yang Q, et al. Effects of omeprazole in improving concurrent chemoradiotherapy efficacy in rectal cancer. World J Gastroenterol. 2017;23(14):2575–2584. doi: 10.3748/wjg.v23.i14.2575
- Stratford IJ. Reduction of tumour intracellular pH and enhancement of melphalan cytotoxicity by the ionophore Nigericin. Int J Cancer. 1995;60(2):264–268. doi: 10.1002/ijc.2910600222
- Miraglia E, Viarisio D, Riganti C, et al. Na+/H+ exchanger activity is increased in doxorubicin-resistant human colon cancer cells and its modulation modifies the sensitivity of the cells to doxorubicin. Int J Cancer. 2005;115(6):924–929. doi: 10.1002/ijc.20959
- Murakami T, Shibuya I, Ise T, et al. Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. Int J Cancer. 2001;93(6):869–874. doi: 10.1002/ijc.1418
- Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8(6):2032–2038. doi: 10.1021/mp200292c
- Faes S, Uldry E. Acidic pH reduces VEGF-mediated endothelial cell responses by Down regulation of VEGFR-2; relevance for antiangiogenic therapies. Oncotarget. 2016;7(52):86026–86038. doi: 10.18632/oncotarget.13323
- Faes S, Duval AP. Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors. Mol Cancer. 2016;15:78. doi: 10.1186/s12943-016-0562-y
- Hamaguchi R. Effects of Alkalization Therapy on Chemotherapy Outcomes in Advanced Pancreatic Cancer: A Retrospective Case-Control Study. In Vivo. 2020;34:2623–2629. doi: 10.21873/invivo.12080
- Chao M, Wu H, Jin K, et al. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. eLife. 2016;5:e15691. doi: 10.7554/eLife.15691
- Chernikova NA, Koklina AV. The relationship between diabetes and cancer. Analytical review. Proceedings of the conference of young scientists of the Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuing Professional Education” of the Ministry of Health of Russia “Topical Issues of Endocrinology”. 2017. Journal for continuing medical education of medical. Endocrinology: news, opinions, training. 2017;2:118–120. (In Russ.)
- Ryu TY, Park J, Scherer PE. Hyperglycemia as a Risk Factor for Cancer Progression. Diabetes Metab J. 2014;38:330–336. doi: 10.4093/dmj.2014.38.5.330
- Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers. 2019;11:1402. doi: 10.3390/cancers11091402
- Berdov BA, Kurpeshev OK, Mardinsky YuS. The influence of hyperthermia and hyperglycemia on the effectiveness of radiation therapy in cancer patients. Russ Oncol J. 1996;1:12–16. (In Russ.)
- Kurpeshev ОК, Mardynskiy YuS, Maksimov SA, Medvedev VS. Combined treatment of patients with oral cancer by “conditional and dynamical” regime of fractional radiotherapy and loco-regional hyperthermia. Siberian Medical Review. 2011;1(67):80–83. (In Russ.)
- Derr RL, Ye X, Islas MU, et al. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2009;27:7:1082–1086. EDN: MJWYWF
- Li XP, Chen Z, Meng ZQ, et al. Concurent hyperglycemia does not influence the long-term prognosis of unresectable hepatocellular carcinomas. World J Gastroent. 2003;9(8):1848–1852. doi: 10.3748/wjg.v9.i8.1848
- Newell K, Franchi A, Pouyssegur J, Tannok I. Studies with glycolysis-deficient cells suggest that production of lastic acid is not the only cause of tumor acidity. Proc Natl Acad Sci. USA. 1993;90:1127–1131. doi: 10.1073/pnas.90.3.1127
- Gerards MC, van der Velden DL, Baars JW, et al. Impact of hyperglycemia on the efficacy of chemotherapy-A systematic review of preclinical studie. Crit Rev Oncol Hematol. 2017;113:235–241. doi: 10.1016/j.critrevonc.2017.03.007
- Leeper D, Engin K, Wang JH, et al. Effect of I.V. Glucose Versus Combined I.V. Plus Oral Glucose on Human Tumour Extracellular Ph for Potential Sensitization to Thermoradiotherapy. International Journal of Hyperthermia. 1998;14(3):257–269. doi: 10.3109/02656739809018231
- Yarmonenko SP. Hypoxic tumor cells are a target for targeted modification of radiosensitivity during radiation therapy. Medical radiology. 1983;26(3):9–12. (In Russ.)
- Osinsky S, Bubnovskaja L, Sergienko T. Tumour pH under induced hyperglycemia and efficacy of chemotherapy. Anticancer Res. 1987;7(2):199–201. EDN: XLXBTZ
- Tagi-Zade SB. Effect of hyperglycemia on tumor growth in rats. Vopr Oncol. 1971;17(2):75–80.
- Letyagin VP, Poddubny IK, Sokolov IG, et al. Induced short-term hyperglycemia in the complex treatment of locally advanced breast cancer. Problems of Oncology. 1984;30(7):63–65. (In Russ.)
- Krimker VM, Goldobenko GV, Ozhiganov EL, et al. The use of artificial hyperglycemia in radiation treatment of patients with rectal cancer. Problems of Oncology. 1986;32(10):40–46. (In Russ.)
- Zharkov VV, Demidchik YuE, Khodina TV. Survival of lung cancer patients with combined treatment using hyperglycemia. Medical radiology. 1991;4:36–38. (In Russ.)
- Izhanov MT. Therapeutic pathomorphosis in hyperglycemia and chemoradiotherapy treatment of locally advanced breast cancer. Proceedings of the conference “Modern aspects of diagnosis and treatment of breast cancer”. Russian scientific and practical conference. September 24–25, 2008, Tomsk. Siberian Journal of Oncology. 2008;7(Appendix N 1):59–60. (In Russ.) Available from: https://onco.tnimc.ru/journal/arkhiv/2008/2008-god-prilojenie-%E2%84%961/
- Stubbs M, McSheely PMJ, Griffits JR, Bashford CL. Causes and coseqences of tumor acidity and implications for treatment. Mol Med Today. 2000;6:15–19. doi: 10.1016/s1357-4310(99)01615-9
- Atema A, Buurman KJH, Noreboom E, Smets LA. Potentiation of DNA-adduct formation and cytotoxicity of platinum-containing drugs by low pH. Int J Cancer. 1993;54:166–172. doi: 10.1002/ijc.2910540126
- Laurencot CM, Kennedy KA. Influence of pH on the cytotoxicity of cisplatin in EMT6 mouse mammary tumor cells. Oncol Res. 1995;7:371–379.
- Wike-Hooley JK, Haveman J, Reinhold HS. The relevance of tumor pH to the treatment of malignant disease. Radiother Oncol. 1984;2:343–366. doi: 10.1016/s0167-8140(84)80077-8
- Yadgarova NS, Egamov ER, Malikov MA, et al. Chemoradiation therapy modified by artificial hyperglycemia in the treatment of locally advanced cancer of the oral mucosa of stage III-IV. Materials of the IV Congress of Oncologists and Radiologists of the SNG. Baku, 2006. P. 103. (In Russ.)
- Bykov VL, Martynyuk LA, Rosenfeld LG, et al. Local hyperthermia and hyperglycemia in LOR-oncology. Medical radiology. 1987;32(1):47–49. (In Russ.)
- Kurpeshev OK. Possibilities and prospects for the use of hyperthermia in medicine. J Clinical Medicine. 1996;(1):14–16. (In Russ.)
- Kurpeshev OK. Hyperthermia in the treatment of patients with non-oncological diseases. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2020;19(6):400–412. doi: 10.17816/1681-3456-2020-19-6-9
- Kurpeshev OK. New possibilities of therapeutic hyperthermia. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2021;20(5):429–448. doi: 10.17816/rjpbr79779
- Kurpeshev OK, van der Zee J. Analysis of the results of randomized trials on hyperthermia in oncology. Medical radiology and radiation safety. 2018;63(3):52–67. doi: 10.12737/article_5b179d60437d54.24079640
- Kurpeshev OK, Van der Zee J. Hyperthermia in conservative and palliative treatment of cancer patients. Part I. Loco-regional hyperthermia. Medical Radiology and Radiation Safety. 2022;67(1):87–98. doi: 10.12737/1024-6177-2022-67-1-87-98
- Kurpeshev OK, Van der Zee J. Hyperthermia in conservative and palliative treatment of cancer patients. Part II. Whole body hyperthermia. Medical Radiology and Radiation Safety. 2022;67(2):43–58. doi: 10.33266/1024-6177-2022-67-2-43-58
- Kurpeshev OK, van der Zee J. Locoregional hyperthermia of malignant tumors: methods, thermometry, equipment. Medical Radiology and Radiation Safety. 2017;62(5):52–63. doi: 10.12737/article_59f30321207ef4.88932385
- Hokland SL, Nielsen T, Busk M, Horsman MR. Imaging tumour physiology and vasculature to predict and assess response to heat. Int J Hyperthermia. 2010;26(3):264–272. doi: 10.3109/02656730903585982
- Kurpeshev OK, van der Zee J. Experimental basis for the use of hyperthermia in oncology. Medical radiology and radiation safety. 2018;63(1):57–77. doi: 10.12737/article_5a8556b4be3e24.36808227
- Van der Heijden AG, Dewhirst MW. Effects of hyperthermia in neutralizing mechanisms of drug resistance in non-muscleinvasive bladder cancer. Int J Hyperthermia. 2016;32(4):434–445. doi: 10.3109/02656736.2016.1155761
- Kurpeshev OK, Tsyb AF, Mardynsky YuS, Berdov BA. Mechanisms of development and ways of overcoming chemoresistance of tumors. Part 4. Experimental principles and practical results of the use of whole body hyperthermia in the treatment of chemoresistant tumors. Russian Journal of Oncology. 2003;3:50–53. (In Russ.)
- Habash RWY, Bansa R, Krewski D, Alhafid HT. Thermal Therapy, Part 2: Hyperthermia Techniques. Critical ReviewsTM in Biomedical Engineering, 2006;34(6):491–542.
- Kok HP, Cressman ENK, Ceelen W, et al. Heating technology for malignant tumors: a review. Int J Hyperthermia. 2020;37(1):711–741. doi: 10.1080/02656736.2020.1779357
- Kosterev VV, Kramer-Ageev EA, Mazokhin VN, et al. Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int J Hyperthermia. 2015;31(4):443–452. doi: 10.3109/02656736.2015.1026413
- Mazokhin VN, Overin AE. “Yakhta” electromagnetic hyperthermia installations in the treatment of patients with malignant neoplasms. Microwave Electronics and Microelectronics. 2017;1:117–121.
- Gabriele P, Orecchia R, Madon E, et al. The cost of hyperthermia: nine years experience at the Radiation Therapy Department of the Turin University. Tumori. 1994;80(5):327–331. doi: 10.1177/030089169408000502
- De Wit GA, de Charro FT, van der Zee J, van Rhoon GC. Economic evaluation of a new cancer treatment: hyperthermia in the management of advanced pelvic cancer. Int Soc of Techn Asses in Health Care. Meeting. 1994. Abst. № 203.
- Van der Zee J, Gonzalez Gonzalez D. The Duth Deep Hyperthermia Trial: results in cervical cancer. Int J Hyperthermia. 2006;18:1–12. doi: 10.1080/02656730110091919
- Koole SN, van Lieshout C, van Driel WJ, et al. Cost Effectiveness of Interval Cytoreductive Surgery With Hyperthermic Intraperitoneal Chemotherapy in Stage III Ovarian Cancer on the Basis of a Randomized Phase III Trial. J Clin Oncol. 2019;37(23):2041–2050. doi: 10.1200/JCO.19.00594
- Kim JH, Chun SY, Lee DE, et al. Cost-effectiveness of hyperthermic intraperitoneal chemotherapy following interval cytoreductive surgery for stage III-IV ovarian cancer from a randomized controlled phase III trial in Korea (KOV-HIPEC-01). Gynecol Oncol. 2023;170:19–24. doi: 10.1016/j.ygyno.2022.12.02
Supplementary files
