Identification of Circulating Tumor Cells in Patients with Lung Cancer using DNA Aptamers

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Lung cancer (LC) is one of the most prevalent types of cancer, with mortality rates reaching 25% of all cancer-related deaths. The majority of patients are classified as stage IV at the time of diagnosis, a stage at which the probability of successful treatment is considerably low. Conventional diagnostic methods for lung cancer are expensive, labor-intensive, and highly invasive if a biopsy is performed. Consequently, liquid biopsy, which involves the extraction of circulating tumor cells from blood samples, has emerged as a pivotal area of research in oncology.

AIM: To develop a method for the isolation and identification of circulating tumor cells in the peripheral blood of patients with lung cancer using DNA aptamers.

MATERIALS AND METHODS: The study objects are lung cancer tissue, blood of patients with lung cancer and primary lung cancer cell culture. Gold-decorated magnetic nanoparticles and thiolated aptamers LC-17, LC-183 and LC-224 were used to isolate proteins. A hybrid of a thiol primer and a non-specific DNA sequence composed of two AG nucleotide repeats was used as a control. Mass spectrometry was performed using UltiMate 3000 nano-UHPLC system coupled with Orbitrap Fusion mass spectrometer (Thermo Scientific, USA). Circulating tumor cell counts were measured on CytoFLEX flow cytometer (Beckman Coulter, USA) after triple staining. Fluorescence microscopy was used for CSC visualization.

RESULTS: The potential protein targets of the aptamers LC-17, LC-183, and LC-224 were identified. These aptamers were then used to isolate circulating tumor cells from the blood of patients with lung cancer. The identification of circulating tumor cells was performed using flow cytometry and fluorescence microscopy.

CONCLUSIONS: The proposed method for the identification of circulating tumor cells through magnetic separation and flow cytometry provides a quantitative analysis of the target analyte, facilitated by the use of cell-specific lung cancer aptamers, including LC-17, LC-183, and LC-224, which exhibit high-affinity binding properties.

Full Text

Restricted Access

About the authors

Aleksey V. Krat

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Regional Clinical Oncology Dispensary named after A.I. Kryzhanovsky

Email: alexkrat@mail.ru
ORCID iD: 0009-0006-5357-2637
SPIN-code: 2846-8592

MD, Cand. Sci. (Medicine)

Russian Federation, Krasnoyarsk; Krasnoyarsk

Daria A. Kirichenko

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: astheno@mail.ru
ORCID iD: 0000-0003-4087-731X
SPIN-code: 2401-6465

Cand. Sci. (Biology)

Russian Federation, Krasnoyarsk

Galina S. Zamay

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: galina.zamay@gmail.com
ORCID iD: 0000-0002-2567-6918
SPIN-code: 6501-0371

Cand. Sci. (Biology)

Russian Federation, Krasnoyarsk; Krasnoyarsk

Ruslan A. Zukov

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Regional Clinical Oncology Dispensary named after A.I. Kryzhanovsky

Email: zukov_rus@mail.ru
ORCID iD: 0000-0002-7210-3020
SPIN-code: 3632-8415

MD, Cand. Sci. (Medicine)

Russian Federation, Krasnoyarsk; Krasnoyarsk

Olga S. Kolovskaya

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: olga.kolovskaya@gmail.com
ORCID iD: 0000-0002-2494-2313
SPIN-code: 2254-5474

Dr. Sci. (Biology)

Russian Federation, Krasnoyarsk; Krasnoyarsk

Tatiana N. Zamay

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: tzamay@yandex.ru
ORCID iD: 0000-0002-7493-8742
SPIN-code: 8799-8497

Dr. Sci. (Biology)

Russian Federation, Krasnoyarsk; Krasnoyarsk

Viktoria D. Fedotovskaya

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: viktoriia.fedotovskaia@gmail.com
ORCID iD: 0000-0002-6472-0782
SPIN-code: 4500-4728
Russian Federation, Krasnoyarsk; Krasnoyarsk

Anastasia A. Koshmanova

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: koshmanova.1998@mail.ru
ORCID iD: 0000-0001-7339-8660
SPIN-code: 2217-2229
Russian Federation, Krasnoyarsk

Natalia A. Luzan

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: laskimo@mail.ru
ORCID iD: 0009-0001-8983-5017
SPIN-code: 1280-0005
Russian Federation, Krasnoyarsk

Semen A. Sidorov

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Regional Clinical Oncology Dispensary named after A.I. Kryzhanovsky

Email: sidorov.syoma2014@yandex.ru
ORCID iD: 0000-0001-6676-6656
SPIN-code: 8740-5259
Russian Federation, Krasnoyarsk; Krasnoyarsk

Kirill A. Lukyanenko

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: k.a.lukyanenko@yandex.ru
ORCID iD: 0000-0002-1115-6735
SPIN-code: 2154-2046
Russian Federation, Krasnoyarsk; Krasnoyarsk

Yury E. Glazyrin

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: yury.glazyrin@gmail.com
ORCID iD: 0000-0002-2826-5751
SPIN-code: 2079-1786

Cand. Sci. (Biology)

Russian Federation, Krasnoyarsk; Krasnoyarsk

Yuri S. Pats

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: y.patz@mail.ru

MD, Cand. Sci. (Medicine)

Russian Federation, Krasnoyarsk

Olga V. Kryukova

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: marta913@mail.ru
ORCID iD: 0000-0001-5241-5409
SPIN-code: 5882-0170

Cand. Sci. (Biology)

Russian Federation, Krasnoyarsk

Anna S. Kichkailo

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: annazamay@yandex.ru
ORCID iD: 0000-0003-0690-7837
SPIN-code: 5387-9071

Dr. Sci. (Biology)

Russian Federation, Krasnoyarsk; Krasnoyarsk

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. СA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  2. Zukov RA, Safontsev IP, Klimenok MP, et al. Analysis of lung cancer morbidity in Krasnoyarsk Krai. Justification for the implementation of innovative methods for early diagnosis. Russ Oncol J. 2023;27(4):171–181. EDN: HPOCPH doi: 10.17816/onco479913
  3. Kratzer TB, Bandi P, Freedman ND, et al. Lung cancer statistics. Cancer. 2024;130(8):1330–1348. doi: 10.1002/cncr.35128
  4. Fiorentino FP, Macaluso M, Miranda F, et al. CTCF and BORIS Regulate Rb2/p130 M.Gene Transcription: A Novel Mechanism and a New Paradigm for Understanding the Biology of Lung Cancer. Mol Cancer Res. 2011;9:225–233. doi: 10.1158/1541-7786.MCR-10-0493
  5. Zhao Q, Yuan Z, Wang H, et al. Role of circulating tumor cells in diagnosis of lung cancer: a systematic review and meta-analysis. J Int Med Res. 2021;49(3):300060521994926. doi: 10.1177/0300060521994926
  6. Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021;11(4):858–873. doi: 10.1158/2159-8290.CD-20-1311
  7. Revelo AE, Martin A, Velasquez R, et al. Liquid biopsy for lung cancers: an update on recent developments. Ann Transl Med. 2019;7:349. doi: 10.21037/atm.2019.03.28
  8. Chen F, Ni Y, Zhang J, et al. The value of folate receptor-positive circulating tumour cells as a diagnostic biomarker for lung cancer: a systematic review and meta-analysis. J Int Med Res. 2023;51(9):3000605231199763. doi: 10.1177/03000605231199763
  9. Tong B, Wang M. Circulating tumor cells in patients with lung cancer: developments and applications for precision medicine. Future Oncol. 2019;15:2531–2542. doi: 10.2217/fon-2018-0548
  10. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–196. doi: 10.1038/nrm3758
  11. Xiao X, Li H, Zhao L, et al. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed Pharmacother. 2021;143:112232. doi: 10.1016/j.biopha.2021.112232
  12. Sabri MZ, Hamid AAA, Hitam SMS, Rahim MZA. The assessment of three dimensional modelling design for single strand DNA aptamers for computational chemistry application. Biophys Chem. 2020;267:106492. doi: 10.1016/j.bpc.2020.106492
  13. Berezovski MV, Lechmann M, Musheev MU, et al. Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc. 2008;130(28):9137–9143. doi: 10.1021/ja801951p
  14. Li W, Liu JB, Hou LK, et al. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer. 2022;21(1):25. doi: 10.1186/s12943-022-01505-z
  15. Ahn JC, Teng PC, Chen PJ, et al. Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology. 2021;73:422–436. doi: 10.1002/hep.31165
  16. Dall’Olio FG, Marabelle A, Caramella C, et al. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2022;19:75–90. doi: 10.1038/s41571-021-00564-3
  17. Su Z, Wang Z, Ni X, et al. Inferring the Evolution and Progression of Small-Cell Lung Cancer by Single-Cell Sequencing of Circulating Tumor Cells. Clin Cancer Res. 2019;25:5049–5060. doi: 10.1158/1078-0432.CCR-18-3571
  18. Zamay GS, Kolovskaya OS, Zamay TN, et al. Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Mol Ther. 2015;23:1–11. doi: 10.1038/mt.2015.108
  19. Lokman NA, Ween MP, Oehler MK, et al. The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron. 2011;4(2):199–208. doi: 10.1007/s12307-011-0064-9
  20. Fan C, Lin X, Wang E. Clinicopathological significance of cathepsin D expression in non-small cell lung cancer is conditional on apoptosis-associated protein phenotype: an immunohistochemistry study. Tumour Biol. 2012;33(4):1045–1052. doi: 10.1007/s13277-012-0338-y
  21. Berr AL, Wiese K, Dos Santos G, et al. Vimentin is required for tumor progression and metastasis in a mouse model of non-small cell lung cancer. Oncogene. 2023;42(25):2074–2087. doi: 10.1038/s41388-023-02703-9
  22. Lee HW, Park YM, Lee SJ, et al. Alpha-smooth muscle actin (ACTA2) is required for metastatic potential of human lung adenocarcinoma. Clin Cancer Res. 2013;19:5879–5889. doi: 10.1158/1078-0432.CCR-13-1181
  23. Lopes D, Maiato H. The Tubulin Code in Mitosis and Cancer. Cells. 2020,9(11):2356. doi: 10.3390/cells9112356
  24. Kim Y, Jang HH. The role of peroxiredoxin family in cancer signaling. J Cancer Prev. 2019;24(2):65. doi: 10.15430/JCP.2019.24.2.65
  25. Peng L, Xiong Y, Wang R, et al. The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY). 2021;13(8):11170. doi: 10.18632/aging.202784
  26. Kunii T, Ogura M, Mie E., et al. Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. Analyst. 2011;136:1310–1312. doi: 10.1039/c0an00962h

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General chromatogram of the mass spectrometric experiment for sample LC-17 (a), primary mass spectrum obtained at 52.62 minutes of the experiment (b) and second-order mass spectrum containing characteristic fragments of the WQEEMELYR peptide unique to the apolipoprotein A-I protein (m/z 642.29) (c).

Download (296KB)
3. Fig. 2. Analyte fractions determined by flow cytometry. From left to right: magnetic particles; leukocytes isolated from the blood of a patient with non-small cell lung cancer; non-small cell lung cancer cells isolated from a post-operative tissue sample of the patient; circulating tumor cells isolated from the blood of a patient with non-small cell lung cancer using magnetic particles.

Download (528KB)
4. Fig. 3. An example of a flow cytometry data processing sequence. From left to right: top — histogram of cells bound to aptamers (P1); histogram of cells bound to CD45 antibodies (P5); histogram of cells with nuclei stained with DAPI (P6).

Download (616KB)
5. Fig. 4. Cell samples isolated from blood samples of patients with lung cancer. From left to right — phase contrast; cells stained with CD45 antibodies, DAPI and aptamers; cells stained with CD45 antibodies. In the middle strip of the figure, in the center, there is a dead circulating tumor cell without a nucleus, and at the bottom, a multinucleated a circulating tumor cell.

Download (664KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 86496 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 80673 от 23.03.2021 г
.