Magnetic nanodisks for therapy of malignant neoplasms



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Persistent increase in cancer incidence, contributing to substantial mortality and disability rates among the working-age population, underscores the importance of developing innovative therapeutic approaches. Researchers are particularly interested in the promising field of magnetically controlled microsurgery of individual tumor cells, which utilizes functionalized magnetic nanostructures. Among various types of magnetic particles, nanodiscs exhibit the greatest potential due to their unique magnetic properties. Their modification with targeting molecules enables the creation of highly specific systems for precise tumor cell intervention. This review evaluates the prospects of using functionalized magnetic nanodiscs (“smart nanoscalpels”) for the selective destruction of malignant cells. The study involved a systematic analysis of scientific literature (2022–2025) from the PubMed database, using the following key terms: “magnetic nanodiscs”, “malignant neoplasms”, “magnetic nanoparticles”. Special focus was given to studying the operational principles of a nanodisks capable of selectively destroying tumor cells under an alternating magnetic field while preserving the viability of surrounding healthy tissues. The conducted analysis demonstrates the substantial potential of targeted magnetic nanodiscs as a promising adjuvant tool for: selective elimination of residual tumor cells in the postoperative perio; treatment of disseminated metastatic lesions; however, translating the magnetomechanical approach from experimental research to clinical practice requires comprehensive preclinical testing, including optimization of nanodisc physicochemical parameters, rigorous evaluation of efficacy and safety, development of standardized application protocols.

Full Text

Restricted Access

About the authors

Victoria D. Fedotovskaya

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia

Email: viktoriia.fedotovskaia@gmail.com
ORCID iD: 0000-0002-6472-0782
SPIN-code: 4500-4728
Russian Federation, Krasnoyarsk, Russia; Krasnoyarsk, Russia

Tatiana N. Zamay

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia

Email: tzamay@yandex.ru
ORCID iD: 0000-0002-7493-8742
SPIN-code: 8799-8497

Dr. Sci. (Biology)

Russian Federation, Krasnoyarsk, Russia; Krasnoyarsk, Russia

Olga S. Kolovskaya

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia

Email: olga.kolovskaya@gmail.com
ORCID iD: 0000-0002-2494-2313
SPIN-code: 2254-5474

Dr. Sci. (Biology)

Russian Federation, Krasnoyarsk, Russia; Krasnoyarsk, Russia

Anna S. Kichkailo

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia

Email: annazamay@yandex.ru
ORCID iD: 0000-0003-1054-4629
SPIN-code: 2217-2229

Dr. Sci. (Biology)

Russian Federation, Krasnoyarsk, Russia; Krasnoyarsk, Russia

Rinat G. Galeev

NPP «Radiosviaz», Krasnoyarsk, Russia

Email: info@krtz.su

Dr. Sci. (Physics and Mathematics)

Russian Federation, Krasnoyarsk, Russia

Ruslan A. Zukov

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia; Krasnoyarsk Regional Clinical Oncological Dispensary named after A.I. Kryzhanovsky, Krasnoyarsk, Russia

Email: zukov.ra@krasgmu.ru
ORCID iD: 0000-0002-7210-3020
SPIN-code: 3632-8415
Russian Federation, Krasnoyarsk, Russia; Krasnoyarsk, Russia

Sergey G. Ovchinnikov

L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia

Email: sgo@iph.krasn.ru
ORCID iD: 0000-0003-1209-545X
SPIN-code: 4857-6804

Dr. Sci. (Physics and Mathematics)

Russian Federation, Krasnoyarsk, Russia

Sergey S. Zamay

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia

Author for correspondence.
Email: sergey-zamay@yandex.ru
ORCID iD: 0000-0002-4828-7077
SPIN-code: 6227-2236

Cand. Sci. (Physics and Mathematics)

Russian Federation, Krasnoyarsk, Russia

References

  1. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005
  2. The Global Cancer Observatory. Cancer Fact Sheet — All Cancers. World Health Organ: Lyon, France. 2019;876:1–2.
  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. СА: A Cancer Journals for Clinicians. 2020;70(1):7–30. doi: 10.3322/caac.21660
  4. Pichot SL, Bentouati S, Ahmad SS, et al. Versatile magnetic microdiscs for the radio enhancement and mechanical disruption of glioblastoma cancer cells. RSC Advances. 2020;10(14):8161–8171. doi: 10.1039/d0ra00164c
  5. Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annual Review of Chemical and Biomolecular Engineering. 2021;7(12):163–185. doi: 10.1146/annurev-chembioeng-102720-015630
  6. Cheng Y, Muroski ME, Petit DCMC, et al. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma. Journal of Controlled Release. 2016;223:75–84. doi: 10.1016/j.jconrel.2015.12.028
  7. Wo R, Xu R, Shao Y et al. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres. Theranostics. 2016;6(4):485–500. doi: 10.7150/thno.13411
  8. Martínez-Banderas AI, Aires A, Teran FJ, et al. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. Scientific Reports. 2016;6:35786. doi: 10.1038/srep35786
  9. Kim DH, Rozhkova EA, Ulasov IV, et al. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nature Materials. 2010;9(2):165–171. doi: 10.1038/nmat2591
  10. Zhang E, Kircher MF, Koch M, et al. Dynamic Magnetic Fields Remote-Control Apoptosis via Nanoparticle Rotation. ACS Nano. 2014;8(4):3192–3201. doi: 10.1021/nn406302j
  11. Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields. ACS Nano. 2013;7(6):5091–5101. doi: 10.1021/nn4007048
  12. Muroski ME, Morshed RA, Cheng Y, et al. Controlled Payload Release by Magnetic Field Triggered Neural Stem Cell Destruction for Malignant Glioma Treatment. PLoS ONE. 2016;11(1):e0145129. doi: 10.1371/journal.pone.0145129
  13. Contreras MF, Sougrat R, Zaher A et al. Non-chemotoxic induction of cancer cell death using magnetic nanowires. International Journal of Nanomedicine. 2015;10:2141–2153. doi: 10.2147/IJN.S77081
  14. Cho MH, Lee EJ, Son M et al. A magnetic switch for the control of cell death signalling in vitro and in vivo systems. Nature Materials. 2012;11(12):1038–1043. doi: 10.1038/nmat3430
  15. Zamay TN, Zamay SS, Kolovskaya OS, Kichkailo AS. Magnetic Nanoparticles in Theranostics. In: Handbook of Materials for Nanomedicine: Metal-Based and Other Nanomaterials. Danvers, Jenny Stanford of Publishing Ptc. Ltd.; 2020:201–244.
  16. Andrés VM, Costo R, Roca AG, et al. Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. Journal of Physics D: Applied Physics. 2008;41(13):134003. doi: 10.1088/0022-3727/41/13/134003
  17. Irodov EI. Electromagnetism. Basic Laws. Moscow: Knowledge Lab; 2019. 319 р. (In Russ.)
  18. Orlov VA, Rudenko RYu, Prokopenko VS, Orlova IN. The effect of mechanical stresses on the structure of the magnetization of three-layer nanosome disks. Physics of metals and metal science. 2020;121(11):1135–1141. doi: 10.31857/S0015323020100071 EDN: KXSKHQ
  19. Lu A-H, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie. 2007;46(8):1222–1244. doi: 10.1002/anie.200602866
  20. Zugazagoitia J, Guedes C, Ponce S, et al. Current challenges in cancer treatment. Clinical Therapeutics. 2016;38(7):1551–1566. doi: 10.1016/j.clinthera.2016.03.026
  21. Goiriena-Goikoetxea M, Muñoz D, Orue I, et al. Disk-shaped magnetic particles for cancer therapy. Physical Review Applied. 2020;7(1):011306. doi: 10.1063/1.5123716
  22. Zamay TN, Zamay GS, Belyanina IV, et al. Noninvasive Microsurgery Using Aptamer-Functionalized Magnetic Microdiscs for Tumor Cell Eradication. Nucleic Acid Therapeutics. 2016;27(2):105–114. doi: 10.1089/nat.2016.0634
  23. Fedotovskaya VD, Zamay SS, Zotova MV, et al. Magnetic Nanodiscs That Destroy Glioblastoma Cells in a Targeted Way in an Alternating Nonheating Magnetic Field. Nanobiotechnology Reports. 2024;19(2):299–304. doi: 10.1134/S2635167624600834
  24. Vemulkar T, Mansell R, Petit DCMC, et al. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications. Applied Physics Letters. 2015;107(1):012403. doi: 10.1063/1.4926336
  25. Engel BN, Akerman J, Butcher B, et al. A 4-mb toggle MRAM based on a novel bit and switching method. IEEE Transactions Magnetics. 2005;41(1):132–136. doi: 10.1109/tmag.2004.840847
  26. Hu W, Wilson CRJ, Koh A, et al. High-moment antiferromagnetic nanoparticles with tunable magnetic properties. Advanced Material. 2008;20(8):1479–1483. doi: 10.1002/adma.200703077
  27. Courcier T, Joisten H, Sabon P, et al. Tumbling motion yielding fast displacements of synthetic antiferromagnetic nanoparticles for biological applications. Applied Physics Letters. 2011;99(9):093107. doi: 10.1063/1.3633121
  28. Guslienko KY, Novosad V, Otani Y, et al. Field evolution of magnetic vortex state in ferromagnetic disks. Applied Physics Letters. 2001;78(24):3848–3850. doi: 10.1063/1.1377850
  29. Joisten H, Courcier T, Balint P, et al. Self-polarization phenomenon and control of dispersion of synthetic antiferromagnetic nanoparticles for biological applications. Applied Physics Letters. 2010;97(25):253112. doi: 10.1063/1.3518702
  30. Wong DW, Gan WL, Liu N, Lew WS. Magnetoactuated cell apoptosis by biaxial pulsed magnetic field. Scientific Reports. 2017;7(1):1–8. doi: 10.1038/s41598-017-11279-w
  31. Zamay T, Zamay S, Luzan N, et al. Magnetic Nanoscalpel for the Effective Treatment of Ascites Tumors. Journal of Functional Biomaterials. 2023;14(4):179. doi: 10.3390/jfb14040179
  32. Scholz W, Guslienko KY, Novosad V, et al. Transition from single-domain to vortex state in soft magnetic cylindrical nanodots. Journal of Magnetism and Magnetic Material. 2003;266(1–2):155–163. doi: 10.1016/S0304-8853(03)00466-9
  33. Moritz J, Dieny B, Nozieres JP, et al. Domain structure in magnetic dots prepared by nanoimprint and e-beam lithography. Journal Applied Physics. 2002;91(10):7314–7316. doi: 10.1063/1.1452260
  34. Zamay SS, Galeev RG, Narodov AA, Kichkaylo AS. The technology of creating a “smart nanoscalpel” for microsurgery of malignant neoplasms. Science and technology of Siberia. 2023;4 (11):60–63.
  35. Illi B, Scopece A, Nanni S, et al. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circulation Research. 2005:96(5):501–508. doi: 10.1161/01.RES.0000159181.06379.63
  36. Stolberg S, McCloskey KE. Can shear stress direct stem cell fate? Biotechnology Progress. 2009;25(1):10–19. doi: 10.1002/btpr.124
  37. Vitol EA, Yefremenko VG, Jain S, et al. Optical transmission modulation by disk-shaped ferromagnetic particles. Journal Applied Physics. 2012;111(7):07A945. doi: 10.1063/1.3679567
  38. Mansell R, Vemulkar T, Petit DCMC, et al. Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction. Scientific Reports. 2017;7(1):4257. doi: 10.1038/s41598-017-04154-1
  39. Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials. 2016;1(5):1–12. doi: 10.1038/natrevmats.2016.14
  40. Decuzzi BG, Tanaka T, Lee SY, et al. Size and shape effects in the biodistribution of intravascularly injected particles. Journal Controlled Release. 2010;141(3):320–327. doi: 10.1016/j.jconrel.2009.10.014
  41. Zamay GS, Zamay TN, Lukyanenko KA, Kichkailo AS. Aptamers increase biocompatibility and reduce the toxicity of magnetic nanoparticles used in biomedicines. Biomedicines. 2020;8(3):1–14. doi: 10.3390/biomedicines8030059
  42. Carboni K, Tschudi J, Nam X, et al. Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech. 2014;15(3):762–771. doi: 10.1208/s12249-014-0099-6
  43. Chauhan VP, Popovi´c Z, Chen O, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angewandte Chemie. 2011;50(48):11417–11420. doi: 10.1002/anie.201104449
  44. Ye H, Shen Z, Yu L, et al. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018;474(2211):1–24. doi: 10.1098/rspa.2017.0845
  45. Mody VV, Cox A, Shah S, et al. Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience. 2014;4(4):385–392. doi: 10.1007/s13204-013-0216-y

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 86496 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 80673 от 23.03.2021 г
.