Exosomes: Friends or Foes in Microbial Infections?


Cite item

Full Text

Abstract

The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.

About the authors

Samane Teymouri

Department of Microbiology, School of Medicine, Tehran University of Medical Sciences

Email: info@benthamscience.net

Maryam Pourhajibagher

Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Abbas Bahador

Department of Microbiology, School of Medicine, Tehran University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist 2018; 11: 1645-58. doi: 10.2147/IDR.S173867 PMID: 30349322
  2. Zetts RM, Stoesz A, Smith BA, Hyun DY. Outpatient antibiotic use and the need for increased antibiotic stewardship efforts. Pediatrics 2018; 141(6): e20174124. doi: 10.1542/peds.2017-4124 PMID: 29793986
  3. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18. doi: 10.1179/2047773215Y.0000000030 PMID: 26343252
  4. Renwick MJ, Simpkin V, Mossialos E, Organization WH. Targeting innovation in antibiotic drug discovery and development: The need for a One Health–One Europe–One World Framework: World Health Organization. Regional Office for Europe 2016.
  5. Organization WH. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016-2017 2017.
  6. Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A. Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale 2020; 12(41): 21034-59. doi: 10.1039/D0NR04540C PMID: 33078823
  7. Nossier SA. Vaccine hesitancy: the greatest threat to COVID-19 vaccination programs. SpringerOpen 2021; pp. 1-3.
  8. Organization WH. Vaccine efficacy, effectiveness and protection. Geneba 2021. Available from: https://wwwwhoint/newsroom/ feature-stories/detail/vaccine-efficacy-effectiveness-andprotection (Accessed on: Sep. 2021).
  9. Davis M, Liu TL, Taylor Y, et al. Exploring patient awareness and perceptions of the appropriate use of antibiotics: A mixed-methods study. Antibiotics 2017; 6(4): 23. doi: 10.3390/antibiotics6040023 PMID: 29088074
  10. Figueiredo AQ, Rodrigues CF, Fernandes N, de Melo-Diogo D, Correia IJ, Moreira AF. Metal-polymer nanoconjugates application in cancer imaging and therapy. Nanomaterials 2022; 12(18): 3166. doi: 10.3390/nano12183166 PMID: 36144953
  11. Cao J, Li X, Tian H. Metal-organic framework (MOF)-based drug delivery. Curr Med Chem 2020; 27(35): 5949-69. doi: 10.2174/0929867326666190618152518 PMID: 31215374
  12. Martínez-Ballesta MC, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new "smart-foods" for health. Foods 2018; 7(5): 72. doi: 10.3390/foods7050072 PMID: 29735897
  13. Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021; 9(6): 584. doi: 10.3390/biomedicines9060584 PMID: 34063973
  14. Rak J, Pouckova P, Benes J, Vetvicka D. Drug delivery systems for phthalocyanines for photodynamic therapy. Anticancer Res 2019; 39(7): 3323-39. doi: 10.21873/anticanres.13475 PMID: 31262853
  15. da Fonseca AS, Mencalha AL, de Paoli F. Antimicrobial photodynamic therapy against Acinetobacter baumannii. Photodiagn Photodyn Ther 2021; 35: 102430. doi: 10.1016/j.pdpdt.2021.102430
  16. Ellson CD, Riça IG, Kim JS, et al. An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils. J Mol Biol 2022; 434(9): 167533. doi: 10.1016/j.jmb.2022.167533 PMID: 35314146
  17. Laforge M, Elbim C, Frère C, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol 2020; 20(9): 515-6. doi: 10.1038/s41577-020-0407-1 PMID: 32728221
  18. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol 2017; 7: 373. doi: 10.3389/fcimb.2017.00373 PMID: 28890882
  19. Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 2016; 116(5): 2826-85. doi: 10.1021/acs.chemrev.5b00148 PMID: 26799741
  20. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473(4): 347-64. doi: 10.1042/BJ20150942 PMID: 26862179
  21. Dao A, Kushwaha R, Kumar A, Huang H, Banerjee S. Engineered exosomes as a photosensitizer delivery platform for cancer photodynamic therapy. ChemMedChem 2022; 17(10): e202200119. doi: 10.1002/cmdc.202200119 PMID: 35384336
  22. Ai X, Mu J, Xing B. Recent advances of light-mediated theranostics. Theranostics 2016; 6(13): 2439-57. doi: 10.7150/thno.16088 PMID: 27877246
  23. Deng K, Li C, Huang S, et al. Recent progress in near infrared light triggered photodynamic therapy. Small 2017; 13(44): 1702299. doi: 10.1002/smll.201702299 PMID: 28961374
  24. Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, et al. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord Chem Rev 2020; 411: 213233. doi: 10.1016/j.ccr.2020.213233
  25. Chilakamarthi U, Giribabu L. Photodynamic therapy: Past, present and future. Chem Rec 2017; 17(8): 775-802. doi: 10.1002/tcr.201600121 PMID: 28042681
  26. Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy. Review. Photodiagn Photodyn Ther 2021; 34: 102091. doi: 10.1016/j.pdpdt.2020.102091 PMID: 33453423
  27. Josefsen LB, Boyle RW. Photodynamic therapy: Novel third:generation photosensitizers one step closer? Br J Pharmacol 2008; 154(1): 1-3. doi: 10.1038/bjp.2008.98 PMID: 18362894
  28. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 2016; 22(3): 348-64. doi: 10.1109/JSTQE.2016.2561201 PMID: 28070154
  29. da Silva Souza Campanholi K, Jaski JM, da Silva Junior R.C., et al. Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies. J Photochem Photobiol B 2020; 203: 111763. doi: 10.1016/j.jphotobiol.2019.111763 PMID: 31931382
  30. Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021; 11(7): 3183-95. doi: 10.7150/thno.52570 PMID: 33537081
  31. Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36(1): 328-34. doi: 10.1016/j.biotechadv.2017.12.010 PMID: 29248680
  32. Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 2015; 4(1): 28239. doi: 10.3402/jev.v4.28239 PMID: 26142461
  33. Fleming A, Sampey G, Chung MC, et al. The carrying pigeons of the cell: Exosomes and their role in infectious diseases caused by human pathogens. Pathog Dis 2014; 71(2): 109-20. doi: 10.1111/2049-632X.12135 PMID: 24449527
  34. Mahmoodzadeh Hosseini H, Ali Imani Fooladi A, Reza Nourani M, Ghanezadeh F. The role of exosomes in infectious diseases. Inflamm Allergy Drug Targets 2013; 12(1): 29-37. doi: 10.2174/1871528111312010005
  35. Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in pathogen infections: A bridge to deliver molecules and link functions. Front Immunol 2018; 9: 90. doi: 10.3389/fimmu.2018.00090 PMID: 29483904
  36. Schorey JS, Harding CV. Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest 2016; 126(4): 1181-9. doi: 10.1172/JCI81132 PMID: 27035809
  37. Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78. doi: 10.1016/j.pharmthera.2017.02.020 PMID: 28202367
  38. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219: 396-405. doi: 10.1016/j.jconrel.2015.07.030 PMID: 26241750
  39. Denzer K, Kleijmeer MJ, Heijnen HFG, Stoorvogel W, Geuze HJ. Exosome: From internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2000; 113(19): 3365-74. doi: 10.1242/jcs.113.19.3365 PMID: 10984428
  40. Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51(8): 2105-20. doi: 10.1194/jlr.M003657 PMID: 20424270
  41. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9(1): 19. doi: 10.1186/s13578-019-0282-2 PMID: 30815248
  42. Shi Y, Du L, Lv D, et al. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol 2021; 56(4): 336-49. doi: 10.1007/s00535-021-01765-4 PMID: 33665710
  43. Wang W, Hao LP, Song H, Chu XY, Wang R. The potential roles of exosomal non-coding RNAs in hepatocellular carcinoma. Front Oncol 2022; 12: 790916. doi: 10.3389/fonc.2022.790916 PMID: 35280805
  44. Moreno-Gonzalo O, Villarroya-Beltri C, Sánchez-Madrid F. Post-translational modifications of exosomal proteins. Front Immunol 2014; 5: 383. doi: 10.3389/fimmu.2014.00383 PMID: 25157254
  45. Waheed ZA, Sarhan NH. Exosomes and their role in immunity, metabolic, cardiovascular, neurodegeneration, reproduction and development. Indian J Forensic Med Toxicol 2021; 15(2): 3571-81.
  46. Bhome R, Del Vecchio F, Lee GH, et al. Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett 2018; 420: 228-35. doi: 10.1016/j.canlet.2018.02.002 PMID: 29425686
  47. Park Y. MicroRNA exocytosis by vesicle fusion in neuroendocrine cells. Front Endocrinol 2017; 8: 355. doi: 10.3389/fendo.2017.00355 PMID: 29312145
  48. Bai S, Hou W, Yao Y, et al. Exocyst controls exosome biogenesis via Rab11a. Mol Ther Nucleic Acids 2022; 27: 535-46. doi: 10.1016/j.omtn.2021.12.023 PMID: 35036064
  49. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17. doi: 10.1038/s41556-018-0250-9 PMID: 30602770
  50. Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2018; 9(1-2): 95-106. doi: 10.1080/21541248.2016.1264352 PMID: 28135905
  51. Essandoh K, Fan G-C. Insights into the mechanism of exosome formation and secretion. Mesenchymal Stem Cell Derived Exosomes 2015; pp. 1-19. doi: 10.1016/B978-0-12-800164-6.00001-0
  52. Lancaster GI, Febbraio MA. Exosome-dependent Trafficking of HSP70. J Biol Chem 2005; 280(24): 23349-55. doi: 10.1074/jbc.M502017200 PMID: 15826944
  53. Ozkocak DC, Phan TK, Poon IKH. Translating extracellular vesicle packaging into therapeutic applications. Front Immunol 2022; 13: 946422. doi: 10.3389/fimmu.2022.946422 PMID: 36045692
  54. Lauwers E, Wang Y-C, Gallardo R, et al. Hsp90 mediates membrane deformation and exosome release. Molecular Cell 2018; 71(5): 689-702. doi: 10.1016/j.molcel.2018.07.016
  55. Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods 2018; 2(9): 1800021. doi: 10.1002/smtd.201800021
  56. Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020; 10(8): 3684-707. doi: 10.7150/thno.41580 PMID: 32206116
  57. Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 2014; 3(1): 23111. doi: 10.3402/jev.v3.23111 PMID: 24678386
  58. Chen J, Li P, Zhang T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol 2022; 9: 811971. doi: 10.3389/fbioe.2021.811971 PMID: 35071216
  59. Soares Martins T, Catita J, Martins Rosa I. A B da Cruz E Silva O, Henriques AG, Henriques AG. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One 2018; 13(6): e0198820. doi: 10.1371/journal.pone.0198820 PMID: 29889903
  60. Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep 2015; 5(1): 17319. doi: 10.1038/srep17319 PMID: 26616523
  61. Jeppesen DK, Hvam ML, Primdahl-Bengtson B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 2014; 3(1): 25011. doi: 10.3402/jev.v3.25011 PMID: 25396408
  62. Ruivo CF, Adem B, Silva M, Melo SA. The biology of cancer exosomes: Insights and new perspectives. Cancer Res 2017; 77(23): 6480-8. doi: 10.1158/0008-5472.CAN-17-0994 PMID: 29162616
  63. Lin B, Tian T, Lu Y, et al. Tracing tumor-derived exosomal PD-L1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew Chem Int Ed 2021; 60(14): 7582-6. doi: 10.1002/anie.202015628 PMID: 33382182
  64. Antimisiaris S, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018; 10(4): 218. doi: 10.3390/pharmaceutics10040218 PMID: 30404188
  65. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804. doi: 10.7150/thno.18133 PMID: 28255367
  66. Cai S, Luo B, Jiang P, et al. Immuno-modified superparamagnetic nanoparticles via host–guest interactions for high-purity capture and mild release of exosomes. Nanoscale 2018; 10(29): 14280-9. doi: 10.1039/C8NR02871K PMID: 30014056
  67. Shen M, Di K, He H, et al. Progress in exosome associated tumor markers and their detection methods. Molecular Biomedicine 2020; 1(1): 3. doi: 10.1186/s43556-020-00002-3 PMID: 35006428
  68. Serrano-Pertierra E, Oliveira-Rodríguez M, Matos M, et al. Extracellular vesicles: Current analytical techniques for detection and quantification. Biomolecules 2020; 10(6): 824. doi: 10.3390/biom10060824 PMID: 32481493
  69. Vu CHT, Lee HG, Chang YK, Oh HM. Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnol Adv 2018; 36(2): 380-96. doi: 10.1016/j.biotechadv.2017.12.018 PMID: 29292155
  70. Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv 2022; 54: 107814. doi: 10.1016/j.biotechadv.2021.107814 PMID: 34389465
  71. Xu K, Jin Y, Li Y, Huang Y, Zhao R. Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research. Front Chem 2022; 10: 844124. doi: 10.3389/fchem.2022.844124 PMID: 35281563
  72. Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int J Mol Sci 2020; 21(18): 6466. doi: 10.3390/ijms21186466 PMID: 32899828
  73. Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther 2018; 26(12): 2838-47. doi: 10.1016/j.ymthe.2018.09.015 PMID: 30341012
  74. Brownlee Z, Lynn KD, Thorpe PE, Schroit AJ. A novel "salting-out" procedure for the isolation of tumor-derived exosomes. J Immunol Methods 2014; 407: 120-6. doi: 10.1016/j.jim.2014.04.003 PMID: 24735771
  75. Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 1970; 40(3): 734-44. doi: 10.1016/0042-6822(70)90218-7 PMID: 4908735
  76. Dash M, Palaniyandi K, Ramalingam S, Sahabudeen S, Raja NS. Exosomes isolated from two different cell lines using three different isolation techniques show variation in physical and molecular characteristics. Biochim Biophys Acta Biomembr 2021; 1863(2): 183490. doi: 10.1016/j.bbamem.2020.183490 PMID: 33212036
  77. Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev 2013; 65(3): 357-67. doi: 10.1016/j.addr.2012.06.014 PMID: 22820532
  78. Abdel-Haq H. Blood exosomes as a tool for monitoring treatment efficacy and progression of neurodegenerative diseases. Neural Regen Res 2019; 14(1): 72-4. doi: 10.4103/1673-5374.243709 PMID: 30531076
  79. Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017; 142: 1-12. doi: 10.1016/j.biomaterials.2017.07.011 PMID: 28715655
  80. Lai CP, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014; 8(1): 483-94. doi: 10.1021/nn404945r PMID: 24383518
  81. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017; 38(6): 754-63. doi: 10.1038/aps.2017.12 PMID: 28392567
  82. Mirzakhani M, Shahbazi M, Oliaei F, Mohammadnia-Afrouzi M. Immunological biomarkers of tolerance in human kidney transplantation: An updated literature review. J Cell Physiol 2019; 234(5): 5762-74. doi: 10.1002/jcp.27480 PMID: 30362556
  83. Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun 2016; 472(1): 53-9. doi: 10.1016/j.bbrc.2016.02.058 PMID: 26902116
  84. Huda MN, Nafiujjaman M, Deaguero IG, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: Progress in clinical and preclinical applications. ACS Biomater Sci Eng 2021; 7(6): 2106-49. doi: 10.1021/acsbiomaterials.1c00217 PMID: 33988964
  85. Gowen A, Shahjin F, Chand S, Odegaard KE, Yelamanchili SV. Mesenchymal stem cell-derived extracellular vesicles: Challenges in clinical applications. Front Cell Dev Biol 2020; 8: 149. doi: 10.3389/fcell.2020.00149 PMID: 32226787
  86. Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release 2021; 329: 894-906. doi: 10.1016/j.jconrel.2020.10.020 PMID: 33058934
  87. Betzer O, Barnoy E, Sadan T, et al. Advances in imaging strategies for in vivo tracking of exosomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(2): e1594. doi: 10.1002/wnan.1594 PMID: 31840427
  88. Ashique S, Anand K. Radiolabelled extracellular vesicles as imaging modalities for precise targeted drug delivery. Pharmaceutics 2023; 15(5): 1426. doi: 10.3390/pharmaceutics15051426 PMID: 37242668
  89. Murray CJ, Ortblad KF, Guinovart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384(9947): 1005-70. doi: 10.1016/S0140-6736(14)60844-8 PMID: 25059949
  90. Izadi M, Dehghan Marvast L, Rezvani ME, et al. Mesenchymal stem-cell derived exosome therapy as a potential future approach for treatment of male infertility caused by Chlamydia infection. Front Microbiol 2022; 12: 785622. doi: 10.3389/fmicb.2021.785622 PMID: 35095800
  91. Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(S2) (Suppl. 2): 789-92. doi: 10.1038/s41409-019-0616-z PMID: 31431712
  92. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 2014; 1846(1): 75-87. PMID: 24747178
  93. Liu SL, Sun P, Li Y, Liu SS, Lu Y. Exosomes as critical mediators of cell-to-cell communication in cancer pathogenesis and their potential clinical application. Transl Cancer Res 2019; 8(1): 298-311. doi: 10.21037/tcr.2019.01.03 PMID: 35116759
  94. Tai YL, Chen KC, Hsieh JT, Shen TL. Exosomes in cancer development and clinical applications. Cancer Sci 2018; 109(8): 2364-74. doi: 10.1111/cas.13697 PMID: 29908100
  95. Wang S, Shi Y. Exosomes derived from immune cells: The new role of tumor immune microenvironment and tumor therapy. Int J Nanomedicine 2022; 17: 6527-50. doi: 10.2147/IJN.S388604 PMID: 36575698
  96. Kalani A, Tyagi A, Tyagi N. Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 2014; 49(1): 590-600. doi: 10.1007/s12035-013-8544-1 PMID: 23999871
  97. Baharlooi H, Azimi M, Salehi Z, Izad M. Mesenchymal stem cell-derived exosomes: A promising therapeutic ace card to address autoimmune diseases. Int J Stem Cells 2020; 13(1): 13-23. doi: 10.15283/ijsc19108 PMID: 31887849
  98. Zarovni N, Corrado A, Guazzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 2015; 87: 46-58. doi: 10.1016/j.ymeth.2015.05.028 PMID: 26044649
  99. Liu Q, Li S, Dupuy A, et al. Exosomes as new biomarkers and drug delivery tools for the prevention and treatment of various diseases: current perspectives. Int J Mol Sci 2021; 22(15): 7763. doi: 10.3390/ijms22157763 PMID: 34360530
  100. Lee J, Lee JH, Chakraborty K, Hwang J, Lee YK. Exosome-based drug delivery systems and their therapeutic applications. RSC Advances 2022; 12(29): 18475-92. doi: 10.1039/D2RA02351B PMID: 35799926
  101. Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: A review. Crit Rev Biotechnol 2020; 40(6): 804-20. doi: 10.1080/07388551.2020.1785385 PMID: 32605394
  102. Mehryab F, Rabbani S, Shahhosseini S, et al. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater 2020; 113: 42-62. doi: 10.1016/j.actbio.2020.06.036 PMID: 32622055
  103. Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact 2020; 20: 100261. doi: 10.1016/j.impact.2020.100261
  104. Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications. J Transl Med 2022; 20(1): 125. doi: 10.1186/s12967-022-03325-7 PMID: 35287692
  105. Kibria G, Ramos EK, Wan Y, Gius DR, Liu H. Exosomes as a drug delivery system in cancer therapy: Potential and challenges. Mol Pharm 2018; 15(9): 3625-33. doi: 10.1021/acs.molpharmaceut.8b00277 PMID: 29771531
  106. McNicholas K, Michael MZ. Immuno-characterization of exosomes using nanoparticle tracking analysis. Exosomes and Microvesicles: Methods and Protocols 2017; 35-42. doi: 10.1007/978-1-4939-6728-5_3
  107. Khatun Z, Bhat A, Sharma S, Sharma A. Elucidating diversity of exosomes: Biophysical and molecular characterization methods. Nanomedicine 2016; 11(17): 2359-77. doi: 10.2217/nnm-2016-0192 PMID: 27488053
  108. Chia BS, Low YP, Wang Q, Li P, Gao Z. Advances in exosome quantification techniques. Trends Analyt Chem 2017; 86: 93-106. doi: 10.1016/j.trac.2016.10.012
  109. Schey KL, Luther JM, Rose KL. Proteomics characterization of exosome cargo. Methods 2015; 87: 75-82. doi: 10.1016/j.ymeth.2015.03.018 PMID: 25837312
  110. Wu Y, Deng W, Klinke DJ II. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015; 140(19): 6631-42. doi: 10.1039/C5AN00688K PMID: 26332016
  111. Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem cell-derived exosome as potential therapeutics for microbial diseases. Front Microbiol 2022; 12: 786111. doi: 10.3389/fmicb.2021.786111 PMID: 35237239
  112. Alenquer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015; 7(9): 5066-83. doi: 10.3390/v7092862 PMID: 26393640
  113. Mao L, Chen Y, Gu J, Zhao Y, Chen Q. Roles and mechanisms of exosomal microRNAs in viral infections. Arch Virol 2023; 168(4): 121. doi: 10.1007/s00705-023-05744-3 PMID: 36977948
  114. Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023; 14: 1154217. doi: 10.3389/fimmu.2023.1154217 PMID: 37063897
  115. Feeley EM, Sims JS, John SP, et al. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 2011; 7(10): e1002337. doi: 10.1371/journal.ppat.1002337 PMID: 22046135
  116. Chaudhari P, Ghate V, Nampoothiri M, Lewis S. Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal 2022; 94: 110325. doi: 10.1016/j.cellsig.2022.110325 PMID: 35367363
  117. Popowski KD, Dinh PUC, George A, Lutz H, Cheng K. Exosome therapeutics for COVID-19 and respiratory viruses. VIEW 2021; 2(3): 20200186. doi: 10.1002/VIW.20200186 PMID: 34766162
  118. Keller MD, Ching KL, Liang FX, et al. Decoy exosomes provide protection against bacterial toxins. Nature 2020; 579(7798): 260-4. doi: 10.1038/s41586-020-2066-6 PMID: 32132711
  119. Zhang Q, Honko A, Zhou J, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 2020; 20(7): 5570-4. doi: 10.1021/acs.nanolett.0c02278 PMID: 32551679
  120. Novak JA. Exosomes: Antiviral agents in the human lung. 2013.
  121. Fu Y, Xiong S. Tagged extracellular vesicles with the RBD of the viral spike protein for delivery of antiviral agents against SARS-COV-2 infection. J Control Release 2021; 335: 584-95. doi: 10.1016/j.jconrel.2021.05.049 PMID: 34089793
  122. Wang Y, Wang G, Wang Z, Zhang H, Zhang L, Cheng Z. Chicken biliary exosomes enhance CD4 + T proliferation and inhibit ALV-J replication in liver. Biochem Cell Biol 2014; 92(2): 145-51. doi: 10.1139/bcb-2013-0096 PMID: 24697699
  123. Smith JA, Daniel R. Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle. AIDS 2016; 30(17): 2611-6. doi: 10.1097/QAD.0000000000001236 PMID: 27536982
  124. Ghasemian SO. Application of exosomes-derived mesenchymal stem cells in treatment of Fungal diseases: From basic to clinical sciences. Front Fungal Biol 2021; 2: 736093. doi: 10.3389/ffunb.2021.736093 PMID: 37744094
  125. Gangadaran P, Madhyastha H, Madhyastha R, et al. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13: 1085057. doi: 10.3389/fimmu.2022.1085057 PMID: 36726968
  126. Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis 2020; 11(4): 288. doi: 10.1038/s41419-020-2473-5 PMID: 32341347
  127. Zhu Y, Feng X, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014; 32(1): 116-25. doi: 10.1002/stem.1504 PMID: 23939814
  128. Monsel A, Zhu Y, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 2015; 192(3): 324-36. doi: 10.1164/rccm.201410-1765OC PMID: 26067592
  129. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014; 14(3): 195-208. doi: 10.1038/nri3622 PMID: 24566916
  130. Colino J, Snapper CM. Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol 2006; 177(6): 3757-62. doi: 10.4049/jimmunol.177.6.3757 PMID: 16951336
  131. Shahabipour F, Barati N, Johnston TP, Derosa G, Maffioli P, Sahebkar A. Exosomes: Nanoparticulate tools for RNA interference and drug delivery. J Cell Physiol 2017; 232(7): 1660-8. doi: 10.1002/jcp.25766 PMID: 28063231
  132. Majumdar R, Tavakoli Tameh A, Parent CA. Exosomes mediate LTB4 release during neutrophil chemotaxis. PLoS Biol 2016; 14(1): e1002336. doi: 10.1371/journal.pbio.1002336 PMID: 26741884
  133. Szatmary AC, Nossal R, Parent CA, Majumdar R. Modeling neutrophil migration in dynamic chemoattractant gradients: Assessing the role of exosomes during signal relay. Mol Biol Cell 2017; 28(23): 3457-70. doi: 10.1091/mbc.e17-05-0298 PMID: 28954858
  134. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007; 110(9): 3234-44. doi: 10.1182/blood-2007-03-079152 PMID: 17666571
  135. Chen Y, Wang X, Yu Y, et al. Serum exosomes of chronic gastritis patients infected with Helicobacter pylori mediate IL-1α expression via IL-6 trans-signalling in gastric epithelial cells. Clin Exp Immunol 2018; 194(3): 339-49. doi: 10.1111/cei.13200 PMID: 30105789
  136. Qian Z, Bai Y, Zhou J, et al. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B Mater Biol Med 2020; 8(32): 7197-212. doi: 10.1039/D0TB01100B PMID: 32633312
  137. Yang X, Shi G, Guo J, Wang C, He Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int J Nanomedicine 2018; 13: 8095-104. doi: 10.2147/IJN.S179380 PMID: 30555228
  138. Wang J, Sun X, Zhao J, et al. Exosomes: A novel strategy for treatment and prevention of diseases. Front Pharmacol 2017; 8: 300. doi: 10.3389/fphar.2017.00300 PMID: 28659795
  139. Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 2004; 72(7): 4127-37. doi: 10.1128/IAI.72.7.4127-4137.2004 PMID: 15213158
  140. Cruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med 2015; 4(11): 1302-16. doi: 10.5966/sctm.2014-0280 PMID: 26378259
  141. Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, del Portillo HA. Exosomes from plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One 2011; 6(10): e26588. doi: 10.1371/journal.pone.0026588 PMID: 22046311
  142. Schwab A, Meyering SS, Lepene B, et al. Extracellular vesicles from infected cells: Potential for direct pathogenesis. Front Microbiol 2015; 6: 1132. doi: 10.3389/fmicb.2015.01132 PMID: 26539170
  143. Happel C, Peñalber-Johnstone C, Tagle DA. Pivoting novel exosome-based technologies for the detection of SARS-CoV-2. Viruses 2022; 14(5): 1083. doi: 10.3390/v14051083 PMID: 35632824
  144. Gurunathan S, Kang MH, Kim JH. Diverse effects of exosomes on COVID-19: A perspective of progress from transmission to therapeutic developments. Front Immunol 2021; 12: 716407. doi: 10.3389/fimmu.2021.716407 PMID: 34394121
  145. Kim B, Kim KM. Role of exosomes and their potential as biomarkers in epstein-barr virus-associated gastric cancer. Cancers 2023; 15(2): 469. doi: 10.3390/cancers15020469 PMID: 36672418
  146. McNamara RP, Chugh PE, Bailey A, et al. Extracellular vesicles from Kaposi Sarcoma-associated herpesvirus lymphoma induce long-term endothelial cell reprogramming. PLoS Pathog 2019; 15(2): e1007536. doi: 10.1371/journal.ppat.1007536 PMID: 30716130
  147. Barclay RA, Schwab A, DeMarino C, et al. Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 2017; 292(28): 11682-701. doi: 10.1074/jbc.M117.793521 PMID: 28536264
  148. Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: Exosomes and HIV-1. J Gen Virol 2019; 100(3): 350-66. doi: 10.1099/jgv.0.001193 PMID: 30702421
  149. Mori Y, Koike M, Moriishi E, et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 2008; 9(10): 1728-42. doi: 10.1111/j.1600-0854.2008.00796.x PMID: 18637904
  150. Chapuy-Regaud S, Dubois M, Plisson-Chastang C, et al. Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response. Biochimie 2017; 141: 70-9. doi: 10.1016/j.biochi.2017.05.003 PMID: 28483690
  151. Ge Y, Sun F, Zhao B, Kong F, Li Z, Kong X. Bacteria derived extracellular vesicles in the pathogenesis and treatment of gastrointestinal tumours. Front Oncol 2023; 12: 1103446. doi: 10.3389/fonc.2022.1103446 PMID: 36776356
  152. Shimoda A, Ueda K, Nishiumi S, et al. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep 2016; 6(1): 18346. doi: 10.1038/srep18346 PMID: 26739388
  153. Smith VL, Jackson L, Schorey JS. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol 2015; 195(6): 2722-30. doi: 10.4049/jimmunol.1403186 PMID: 26246139
  154. Singh PP, LeMaire C, Tan JC, Zeng E, Schorey JS. Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One 2011; 6(4): e18564. doi: 10.1371/journal.pone.0018564 PMID: 21533172
  155. Sun Z, Pang X, Wang X, Zeng H. Differential expression analysis of miRNAs in macrophage-derived exosomes in the tuberculosis-infected bone microenvironment. Front Microbiol 2023; 14: 1236012. doi: 10.3389/fmicb.2023.1236012 PMID: 37601387
  156. Kim MJ, Jung BK, Cho J, et al. Exosomes secreted by Toxoplasma gondii-infected L6 cells: their effects on host cell proliferation and cell cycle changes. Korean J Parasitol 2016; 54(2): 147-54. doi: 10.3347/kjp.2016.54.2.147 PMID: 27180572
  157. Gómez-Chávez F, Murrieta-Coxca JM, Caballero-Ortega H, Morales-Prieto DM, Markert UR. Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 2023; 158: 103957. doi: 10.1016/j.jri.2023.103957 PMID: 37253287
  158. Silverman JM, Clos J, Horakova E, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 2010; 185(9): 5011-22. doi: 10.4049/jimmunol.1000541 PMID: 20881185
  159. Soto-Serna LE, Diupotex M, Zamora-Chimal J, et al. Leishmania mexicana: Novel insights of immune modulation through amastigote exosomes. J Immun Res 2020; 2020.
  160. Hassani K, Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: A comparative proteomic and functional analysis. PLoS Negl Trop Dis 2013; 7(5): e2185. doi: 10.1371/journal.pntd.0002185 PMID: 23658846
  161. Cortes-Serra N, Gualdron-Lopez M, Pinazo M-J, Torrecilhas AC, Fernandez-Becerra C. Extracellular vesicles in Trypanosoma cruzi infection: Immunomodulatory effects and future perspectives as potential control tools against chagas disease. J Immun Res 2022; 2022.
  162. Licá ICL, Frazão GCCG, Nogueira RA, et al. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150(5): 401-15. doi: 10.1017/S0031182023000021 PMID: 36601859
  163. Wang L, Li Z, Shen J, et al. Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune- activity of macrophage. Parasitol Res 2015; 114(5): 1865-73. doi: 10.1007/s00436-015-4373-7 PMID: 25855345
  164. Rodrigues ML, Nakayasu ES, Oliveira DL, et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008; 7(1): 58-67. doi: 10.1128/EC.00370-07 PMID: 18039940
  165. Panepinto J, Komperda K, Frases S, et al. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2009; 71(5): 1165-76. doi: 10.1111/j.1365-2958.2008.06588.x PMID: 19210702
  166. Ratushnyak MG, Semochkina YP. Exosomes: Natural Nanoparticles with Therapeutic Potential. Nanotechnol Russ 2020; 15(7-8): 415-27. doi: 10.1134/S1995078020040126
  167. Elliott RO, He M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics 2021; 13(1): 122. doi: 10.3390/pharmaceutics13010122 PMID: 33477972
  168. Perocheau D, Touramanidou L, Gurung S, Gissen P, Baruteau J. Clinical applications for exosomes: Are we there yet? Br J Pharmacol 2021; 178(12): 2375-92. doi: 10.1111/bph.15432 PMID: 33751579
  169. Devhare PB, Ray RB. A novel role of exosomes in the vaccination approach. Ann Transl Med 2017; 5(1): 23. doi: 10.21037/atm.2016.12.75 PMID: 28164108
  170. Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials-an ISEV position paper. J Extracell Vesicles 2015; 4(1): 30087. doi: 10.3402/jev.v4.30087 PMID: 26725829
  171. Sharma SK, Dai T, Kharkwal GB, et al. Drug discovery of antimicrobial photosensitizers using animal models. Curr Pharm Des 2011; 17(13): 1303-19. doi: 10.2174/138161211795703735 PMID: 21504410
  172. Zhi X, Liu Y, Lin L, et al. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomedicine 2019; 20: 102019. doi: 10.1016/j.nano.2019.102019 PMID: 31125676
  173. Yin R, Agrawal T, Khan U, et al. Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs. Nanomedicine 2015; 10(15): 2379-404. doi: 10.2217/nnm.15.67 PMID: 26305189
  174. Thomas-Moore BA, del Valle CA, Field RA, Marín MJ. Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochem Photobiol Sci 2022; 21(6): 1111-31. doi: 10.1007/s43630-022-00194-3 PMID: 35384638
  175. Dharmaratne P, Sapugahawatte DN, Wang B, et al. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200: 112341. doi: 10.1016/j.ejmech.2020.112341 PMID: 32505848
  176. Lin S, Yu Z, Chen D, et al. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020; 16(9): 1903916. doi: 10.1002/smll.201903916 PMID: 31663295
  177. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118(4): 1917-50. doi: 10.1021/acs.chemrev.7b00534 PMID: 29384376
  178. Li Z, Wu N, Cheng J, et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Theranostics 2020; 10(11): 5090-106. doi: 10.7150/thno.44270 PMID: 32308770
  179. Ding L, Yang X, Gao Z, et al. A holistic review of the state-of-the-art microfluidics for exosome separation: An overview of the current status, existing obstacles, and future outlook. Small 2021; 17(29): 2007174. doi: 10.1002/smll.202007174 PMID: 34047052
  180. Kaushik AC, Wu Q, Lin L, et al. Exosomal ncRNAs profiling of mycobacterial infection identified miRNA-185-5p as a novel biomarker for tuberculosis. Brief Bioinform 2021; 22(6): bbab210. doi: 10.1093/bib/bbab210 PMID: 34169968
  181. Yi J, Wang Y, Zhang H, et al. Interferon-inducible transmembrane protein 3-containing exosome as a new carrier for the cell-to-cell transmission of anti-Brucella activity. Front Vet Sci 2021; 8: 642968. doi: 10.3389/fvets.2021.642968 PMID: 33816587
  182. Kalarikkal SP, Sundaram GM. Edible plant-derived exosomal microRNAs: Exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2. Toxicol Appl Pharmacol 2021; 414: 115425. doi: 10.1016/j.taap.2021.115425 PMID: 33516820
  183. Kim KU, Han K, Kim J, et al. The protective role of exosome-derived MicroRNAs and proteins from human breast milk against infectious agents. Metabolites 2023; 13(5): 635. doi: 10.3390/metabo13050635 PMID: 37233676

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers