Preparation of Nanoparticle Doped Metal-organic Framework (MOF) and its Potential Use for Photodegradation of Antibiotics in Water: A Review


Cite item

Full Text

Abstract

Abstract:Semiconductors have gained recognition as efficient photocatalysts for the degradation of antibiotics in water. However, their performance is limited due to poor absorption of light, recombination of electron-hole pairs, and poor recovery from an aqueous solution. This study reviewed the inclusion of semiconductor nanoparticles in a metal-organic framework (MOF), forming nanoparticle@ MOF composite to overcome these challenges. Three methods including ship-in-bottle, bottlearound- ship, and one-step synthesis were identified for the synthesis of nanoparticle@MOF composite. Among the synthesis methods, the one-step method remains promising with high prospects. Nanoparticle@ MOF composite has exhibited high efficiency in removing antibiotics in an aqueous system utilizing visible light as a photo source for promoting the process. Despite the success achieved, there is a need for large-scale studies and cost evaluation to understand better the feasibility and economic implications of the nanoparticle@MOF composite technique as an affordable technique for the purification of an antibiotic-contaminated water system.

About the authors

Adewale Adewuyi

Department of Chemical Sciences, Faculty of Natural Sciences,, Redeemer’s University

Author for correspondence.
Email: info@benthamscience.net

Woei Lau

School of Chemical and Energy Engineering,, Universiti Teknologi Malaysia

Email: info@benthamscience.net

References

  1. Polianciuc SI, Gurzău AE, Kiss B, Ștefan MG, Loghin F. Antibiotics in the environment: Causes and consequences. Med Pharm Rep 2020; 93(3): 231-40. doi: 10.15386/mpr-1742 PMID: 32832887
  2. Archundia D, Duwig C, Lehembre F, et al. Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Sci Total Environ 2017; 576: 671-82. doi: 10.1016/j.scitotenv.2016.10.129 PMID: 27810754
  3. Locatelli MAF, Sodré FF, Jardim WF. Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry. Arch Environ Contam Toxicol 2011; 60(3): 385-93. doi: 10.1007/s00244-010-9550-1 PMID: 20535610
  4. Kleywegt S, Pileggi V, Yang P, et al. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada — Occurrence and treatment efficiency. Sci Total Environ 2011; 409(8): 1481-8. doi: 10.1016/j.scitotenv.2011.01.010 PMID: 21315426
  5. Cha JM, Yang S, Carlson KH. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatog-raphy combined with electrospray tandem mass spectrometry. J Chromatogr A 2006; 1115(1-2): 46-57. doi: 10.1016/j.chroma.2006.02.086 PMID: 16595135
  6. Bielen A, Šimatović A, Kosić-Vukšić J, et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res 2017; 126: 79-87. doi: 10.1016/j.watres.2017.09.019 PMID: 28923406
  7. Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 2015; 69: 234-42. doi: 10.1016/j.watres.2014.11.021 PMID: 25482914
  8. Tuc Dinh Q, Alliot F, Moreau-Guigon E, Eurin J, Chevreuil M, Labadie P. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta 2011; 85(3): 1238-45. doi: 10.1016/j.talanta.2011.05.013 PMID: 21807177
  9. Mirzaei R, Yunesian M, Nasseri S, et al. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci Total Environ 2018; 619-620: 446-59. doi: 10.1016/j.scitotenv.2017.07.272 PMID: 29156265
  10. aus der Beek T, Weber FA, Bergmann A, et al. Pharmaceuticals in the environment-Global occurrences and perspectives. Environ Toxicol Chem 2016; 35(4): 823-35. doi: 10.1002/etc.3339 PMID: 26666847
  11. Murata A, Takada H, Mutoh K, Hosoda H, Harada A, Nakada N. Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Sci Total Environ 2011; 409(24): 5305-12. doi: 10.1016/j.scitotenv.2011.09.014 PMID: 21975006
  12. Madikizela LM, Tavengwa NT, Chimuka L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical meth-ods. J Environ Manage 2017; 193: 211-20. doi: 10.1016/j.jenvman.2017.02.022 PMID: 28222352
  13. Azanu D, Styrishave B, Darko G, Weisser JJ, Abaidoo RC. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci Total Environ 2018; 622-623: 293-305. doi: 10.1016/j.scitotenv.2017.11.287 PMID: 29216470
  14. K’oreje KO, Demeestere K, De Wispelaere P, Vergeynst L, Dewulf J, Van Langenhove H. From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Sci Total Environ 2012; 437: 153-64. doi: 10.1016/j.scitotenv.2012.07.052 PMID: 22935682
  15. Rodriguez-Mozaz S, Vaz-Moreira I, Varela Della Giustina S, et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ Int 2020; 140: 105733. doi: 10.1016/j.envint.2020.105733 PMID: 32353669
  16. Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HMN. Environmentally-related contaminants of high concern: Potential sources and ana-lytical modalities for detection, quantification, and treatment. Environ Int 2019; 122: 52-66. doi: 10.1016/j.envint.2018.11.038 PMID: 30503315
  17. Fairbairn DJ, Elliott SM, Kiesling RL, Schoenfuss HL, Ferrey ML, Westerhoff BM. Contaminants of emerging concern in urban storm-water: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs). Water Res 2018; 145: 332-45. doi: 10.1016/j.watres.2018.08.020 PMID: 30165318
  18. Grenni P. Antimicrobial resistance in rivers: A review of the genes detected and new challenges. Environ Toxicol Chem 2022; 41(3): 687-714. doi: 10.1002/etc.5289 PMID: 35191071
  19. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Treatment technologies for emerging contaminants in water: A review. Chem Eng J 2017; 323: 361-80. doi: 10.1016/j.cej.2017.04.106
  20. Velempini T, Prabakaran E, Pillay K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water-a review. Mater Today Chem 2021; 19: 100380. doi: 10.1016/j.mtchem.2020.100380
  21. Yuan B, Li L, Murugadoss V, et al. Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. ES Food Agroforestry 2020; 1(7): 41-52. doi: 10.30919/esfaf0004
  22. Peng H, Cao J, Xiong W, et al. Two-dimension N-doped nanoporous carbon from KCl thermal exfoliation of Zn-ZIF-L: Efficient adsorp-tion for tetracycline and optimizing of response surface model. J Hazard Mater 2021; 402: 123498. doi: 10.1016/j.jhazmat.2020.123498 PMID: 32712366
  23. Wang H, Li X, Zhao X, et al. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modifi-cation strategies. Chin J Catal 2022; 43(2): 178-214. doi: 10.1016/S1872-2067(21)63910-4
  24. Zhu C, Li Y, Yang Y, et al. Influence of operational parameters on photocatalytic decolorization of a cationic azo dye under visiblelight in aqueous Ag3PO4. Inorg Chem Commun 2020; 115: 107850. doi: 10.1016/j.inoche.2020.107850
  25. Anju Chanu L, Joychandra Singh W, Jugeshwar Singh K, Nomita Devi K. Effect of operational parameters on the photocatalytic degrada-tion of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys 2019; 12: 1230-7. doi: 10.1016/j.rinp.2018.12.089
  26. Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chin J Catal 2021; 42(6): 872-903. doi: 10.1016/S1872-2067(20)63715-9
  27. Briones RM, Sarmah AK, Padhye LP. A global perspective on the use, occurrence, fate and effects of anti-diabetic drug metformin in natural and engineered ecosystems. Environ Pollut 2016; 219: 1007-20. doi: 10.1016/j.envpol.2016.07.040 PMID: 27473659
  28. Jjemba PK. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 2006; 63(1): 113-30. doi: 10.1016/j.ecoenv.2004.11.011 PMID: 16399163
  29. Lienert J, Bürki T, Escher BI. Reducing micropollutants with source control: Substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Sci Technol 2007; 56(5): 87-96. doi: 10.2166/wst.2007.560 PMID: 17881841
  30. Peng X, Tang C, Yu Y, et al. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China. Environ Int 2009; 35(2): 303-9. doi: 10.1016/j.envint.2008.07.021 PMID: 18774173
  31. Zhenlu S, Houyu L, Xiaochen L, Yan X, Xiangqun Z. The occurrence and risk management of antibiotics and antibiotic resistant genes in rural solid waste. Asian J Ecotoxicol 2020; (4): 112-22.
  32. Zhou W, Tang Y, Du X, et al. Fine polystyrene microplastics render immune responses more vulnerable to two veterinary antibiotics in a bivalve species. Mar Pollut Bull 2021; 164: 111995. doi: 10.1016/j.marpolbul.2021.111995 PMID: 33493858
  33. Mahmood AR, Al-Haideri HH, Hassan FM. Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq.Advances Public Health 2019; 2019: 7851354.
  34. Guo X, Xiaojun L, Zhang A, Yan Z, Chen S, Wang N. Antibiotic contamination in a typical water-rich city in southeast China: a concern for drinking water resource safety. J Environ Sci Health B 2020; 55(3): 193-209. doi: 10.1080/03601234.2019.1679563 PMID: 31658861
  35. Östman M, Lindberg RH, Fick J, Björn E, Tysklind M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 2017; 115: 318-28. doi: 10.1016/j.watres.2017.03.011 PMID: 28288311
  36. Larsson DGJ, de Pedro C, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 2007; 148(3): 751-5. doi: 10.1016/j.jhazmat.2007.07.008 PMID: 17706342
  37. Agunbiade FO, Moodley B. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem 2016; 35(1): 36-46. doi: 10.1002/etc.3144 PMID: 26138880
  38. Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 2018; 115(15): E3463-70. doi: 10.1073/pnas.1717295115 PMID: 29581252
  39. Bhagat C, Kumar M, Tyagi VK, Mohapatra PK. Proclivities for prevalence and treatment of antibiotics in the ambient water: A review. NPJ Clean Water 2020; 3(1): 1-18.
  40. Iyanee F, Simamura K, Prabhasankar V, Taniyasu S, Tsuruta M, Balakrishna K, et al. Occurrence of antibiotics in river water: A case study of Vrishabhavathi River near Bangalore, India. 33rd International Symposium on Halogenated Persistent Organic Pollutants. DIOXIN; Daegu, South Korea 2013.
  41. Sharma BM, Bečanová J, Scheringer M, et al. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, person-al care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ 2019; 646: 1459-67. doi: 10.1016/j.scitotenv.2018.07.235 PMID: 30235631
  42. Gothwal R, Thatikonda S. Role of environmental pollution in prevalence of antibiotic resistant bacteria in aquatic environment of river: case of Musi river, South India. Water Environ J 2017; 31(4): 456-62. doi: 10.1111/wej.12263
  43. Underwood JC, Harvey RW, Metge DW, et al. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 2011; 45(7): 3096-101. doi: 10.1021/es103605e PMID: 21384910
  44. Chen YY, Ma YL, Yang J, Wang LQ, Lv JM, Ren CJ. Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway. Chem Eng J 2017; 307: 15-23. doi: 10.1016/j.cej.2016.08.046
  45. Salamandane A, Vila-Boa F, Malfeito-Ferreira M, Brito L. High fecal contamination and high levels of antibiotic-resistant Enterobacteri-aceae in water consumed in the city of Maputo, Mozambique. Biology 2021; 10(6): 558. doi: 10.3390/biology10060558 PMID: 34203039
  46. Kaur S, Sharma B. Microbial evaluation of bottled water marketed in North India. Indian J Public Health 2015; 59(4): 299-301. doi: 10.4103/0019-557X.169660 PMID: 26584170
  47. Epundu UU, Adinma ED, Ezeama NN, Uzochukwu BS, Epundu OC, Ogbonna BO. Assessment of the physical, chemical and microbio-logical quality of packaged water sold in Nnewi, South-East Nigeria: A population health risk assessment and preventive care study. Int J Community Med Public Health 2017; 4(11): 4003-10. doi: 10.18203/2394-6040.ijcmph20174809
  48. Abrokwah S, Ekumah B, Abrokwah FK. Microbial assessment of plastic bottles reused for packaging food products in Ghana. Food Control 2020; 109: 106956. doi: 10.1016/j.foodcont.2019.106956
  49. Segura PA, Takada H, Correa JA, et al. Global occurrence of anti-infectives in contaminated surface waters: Impact of income inequality between countries. Environ Int 2015; 80: 89-97. doi: 10.1016/j.envint.2015.04.001 PMID: 25910860
  50. Russo V, Hmoudah M, Broccoli F, Iesce MR, Jung OS, Di Serio M. Applications of metal organic frameworks in wastewater treatment: A review on adsorption and photodegradation. Front Chem Eng 2020; 2: 581487. doi: 10.3389/fceng.2020.581487
  51. Hussain MZ, Yang Z, Huang Z, Jia Q, Zhu Y, Xia Y. Recent advances in metal–organic frameworks derived nanocomposites for photo-catalytic applications in energy and environment. Adv Sci 2021; 8(14): 2100625. doi: 10.1002/advs.202100625 PMID: 34032017
  52. Védrine JC. Importance, features and uses of metal oxide catalysts in heterogeneous catalysis. Chin J Catal 2019; 40(11): 1627-36. doi: 10.1016/S1872-2067(18)63162-6
  53. Haber J. The Concept of Structure-Sensitivity in Catalysis by Oxides Studies in Surface Science and Catalysis 48. Amsterdam: Elsevier 1989; pp. 447-67.
  54. Kansal SK, Kundu P, Sood S, Lamba R, Umar A, Mehta SK. Photocatalytic degradation of the antibiotic levofloxacin using highly crys-talline TiO2 nanoparticles. New J Chem 2014; 38(7): 3220-6. doi: 10.1039/C3NJ01619F
  55. Ayoub M. Degradation of tetracycline using nanoparticles of zero-valent iron and copper. Water Pract Technol 2022; 17(1): 246-53. doi: 10.2166/wpt.2021.100
  56. Malakootian M, Nasiri A, Amiri Gharaghani M. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem Eng Commun 2020; 207(1): 56-72. doi: 10.1080/00986445.2019.1573168
  57. Chen F, Yang Q, Sun J, et al. Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradi-ation: Mineralization efficiency and mechanism. ACS Appl Mater Interfaces 2016; 8(48): 32887-900. doi: 10.1021/acsami.6b12278 PMID: 27934136
  58. Wen XJ, Niu CG, Zhang L, Liang C, Guo H, Zeng GM. Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight. J Catal 2018; 358: 141-54. doi: 10.1016/j.jcat.2017.11.029
  59. Tang J, Wang R, Liu M, et al. Construction of novel Z-scheme Ag/FeTiO3/Ag/BiFeO3 photocatalyst with enhanced visible-light-driven photocatalytic performance for degradation of norfloxacin. Chem Eng J 2018; 351: 1056-66. doi: 10.1016/j.cej.2018.06.171
  60. Yu X, Zhang J, Zhang J, et al. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation path-ways and intermediates. Chem Eng J 2019; 374: 316-27. doi: 10.1016/j.cej.2019.05.177
  61. Yazdanbakhsh A, Eslami A, Massoudinejad M, Avazpour M. Enhanced degradation of sulfamethoxazole antibiotic from aqueous solu-tion using Mn-WO3/LED photocatalytic process: Kinetic, mechanism, degradation pathway and toxicity reduction. Chem Eng J 2020; 380: 122497. doi: 10.1016/j.cej.2019.122497
  62. Nguyen TT, Nam SN, Son J, Oh J. Tungsten trioxide (WO3)-assisted photocatalytic degradation of amoxicillin by simulated solar irradia-tion. Sci Rep 2019; 9(1): 9349. doi: 10.1038/s41598-019-45644-8 PMID: 30626917
  63. Rong F, Lu Q, Mai H, Chen D, Caruso RA. Hierarchically porous WO3/CdWO4 fiber-in-tube nanostructures featuring readily accessible active sites and enhanced photocatalytic effectiveness for antibiotic degradation in water. ACS Appl Mater Interfaces 2021; 13(18): 21138-48. doi: 10.1021/acsami.0c22825 PMID: 33908249
  64. Olusegun SJ, Larrea G, Osial M, Jackowska K, Krysinski P. Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles. Tetracycl Case Catal 2021; 11(10): 1243. doi: 10.3390/catal11101243
  65. Gholami P, Khataee A, Bhatnagar A. Photocatalytic degradation of antibiotic and hydrogen production using diatom-templated 3D WO3-x@mesoporous carbon nanohybrid under visible light irradiation. J Clean Prod 2020; 275: 124157. doi: 10.1016/j.jclepro.2020.124157
  66. Shurbaji S, Huong PT, Altahtamouni TM. Review on the visible light photocatalysis for the decomposition of ciprofloxacin, norfloxacin, tetracyclines, and sulfonamides antibiotics in wastewater. Catalysts 2021; 11(4): 437. doi: 10.3390/catal11040437
  67. Huang ZF, Song J, Pan L, et al. Mesoporous W 18 O 49 hollow spheres as highly active photocatalysts. Chem Commun 2014; 50(75): 10959-62. doi: 10.1039/C4CC02201G PMID: 24995560
  68. Gascon J, Corma A, Kapteijn F, Llabrés i Xamena FX. Metal organic framework catalysis: Quo vadis? ACS Catal 2014; 4(2): 361-78. doi: 10.1021/cs400959k
  69. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Metal–organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev 2015; 44(19): 6804-49. doi: 10.1039/C4CS00395K PMID: 25958955
  70. Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Metal–organic frameworks as platforms for functional materials. Acc Chem Res 2016; 49(3): 483-93. doi: 10.1021/acs.accounts.5b00530 PMID: 26878085
  71. Fang Z, Bueken B, De Vos DE, Fischer RA. Defect‐engineered metal–organic frameworks. Angew Chem Int Ed 2015; 54(25): 7234-54. doi: 10.1002/anie.201411540 PMID: 26036179
  72. Rubio-Martinez M, Batten MP, Polyzos A, et al. Versatile, high quality and scalable continuous flow production of metal-organic frame-works. Sci Rep 2014; 4(1): 5443. doi: 10.1038/srep05443 PMID: 24962145
  73. Sholl DS, Lively RP. Defects in metal–organic frameworks: Challenge or opportunity? J Phys Chem Lett 2015; 6(17): 3437-44. doi: 10.1021/acs.jpclett.5b01135 PMID: 26268796
  74. Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 2018; 47(22): 8134-72. doi: 10.1039/C8CS00256H PMID: 30003212
  75. Xiang W, Zhang Y, Lin H, Liu C. Nanoparticle/metal–organic framework composites for catalytic applications: Current status and per-spective. Molecules 2017; 22(12): 2103. doi: 10.3390/molecules22122103 PMID: 29189744
  76. Railey P, Song Y, Liu T, Li Y. Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater Res Bull 2017; 96: 385-94. doi: 10.1016/j.materresbull.2017.04.020
  77. Farha OK, Eryazici I, Jeong NC, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J Am Chem Soc 2012; 134(36): 15016-21. doi: 10.1021/ja3055639 PMID: 22906112
  78. Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev 2017; 46(15): 4614-30. doi: 10.1039/C6CS00537C PMID: 28516998
  79. Chen CX, Zheng SP, Wei ZW, et al. A robust metal–organic framework combining open metal sites and polar groups for methane purifi-cation and CO2/fluorocarbon capture. Chemistry 2017; 23(17): 4060-4. doi: 10.1002/chem.201606038 PMID: 28177165
  80. Fuoco A, Khdhayyer M, Attfield M, Esposito E, Jansen J, Budd P. Synthesis and transport properties of novel MOF/PIM-1/MOF sand-wich membranes for gas separation. Membranes 2017; 7(1): 7. doi: 10.3390/membranes7010007 PMID: 28208658
  81. Sharanyakanth PS, Radhakrishnan M. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Sci Technol 2020; 104: 102-16. doi: 10.1016/j.tifs.2020.08.004
  82. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem Rev 2012; 112(2): 933-69. doi: 10.1021/cr200304e PMID: 22098087
  83. Khan MS, Shahid M. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites Electrochemical Applications of Metal-Organic Frameworks. Amsterdam: Elsevier 2022; pp. 17-35.
  84. Dai J, Xiao X, Duan S, et al. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water. Chem Eng J 2018; 331: 64-74. doi: 10.1016/j.cej.2017.08.090
  85. Liu J, Zhuang Y, Wang L, Zhou T, Hirosaki N, Xie RJ. Achieving multicolor long-lived luminescence in dye-encapsulated metal–organic frameworks and its application to anticounterfeiting stamps. ACS Appl Mater Interfaces 2018; 10(2): 1802-9. doi: 10.1021/acsami.7b13486 PMID: 29261282
  86. Liu J, Liu T, Wang C, Yin X, Xiong Z. Introduction of amidoxime groups into metal-organic frameworks to synthesize MIL-53(Al)-AO for enhanced U(VI) sorption. J Mol Liq 2017; 242: 531-6. doi: 10.1016/j.molliq.2017.07.024
  87. Anumah A, Louis H, Zafar S-u, Hamzat AT, Amusan OO, Pigweh AI, et al. Metal-organic frameworks (MOFs): Recent advances in syn-thetic methodologies and some applications. Chem Methodol 2019; 3(3): 283-305.
  88. Wan S, Xu O, Zhu X. Synthesis of ionic liquid modified metal-organic framework composites and its application in solid-phase extrac-tion: A review. Ionics 2021; 27(2): 445-56. doi: 10.1007/s11581-020-03894-x
  89. Mao W, Huang R, Xu H, et al. Effects of acid modulators on the microwave-assisted synthesis of Cr/Sn metal-organic frameworks. Polymers 2022; 14(18): 3826. doi: 10.3390/polym14183826 PMID: 36145971
  90. Varsha M, Nageswaran G. Direct electrochemical synthesis of metal organic frameworks. J Electrochem Soc 2020; 167(15): 155527. doi: 10.1149/1945-7111/abc6c6
  91. Asghar A, Iqbal N, Noor T, Kariuki BM, Kidwell L, Easun TL. Efficient electrochemical synthesis of a manganese-based metal–organic framework for H2 and CO2 uptake. Green Chem 2021; 23(3): 1220-7. doi: 10.1039/D0GC03292A
  92. Pachfule P, Yang X, Zhu QL, Tsumori N, Uchida T, Xu Q. From Ru nanoparticle-encapsulated metal–organic frameworks to highly cata-lytically active Cu/Ru nanoparticle-embedded porous carbon. J Mater Chem A Mater Energy Sustain 2017; 5(10): 4835-41. doi: 10.1039/C6TA10748F
  93. Hermes S, Schröder F, Amirjalayer S, Schmid R, Fischer RA. Loading of porous metal–organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type L n M a @MOF-5. J Mater Chem 2006; 16(25): 2464-72. doi: 10.1039/B603664C
  94. Moon HR, Lim DW, Suh MP. Fabrication of metal nanoparticles in metal–organic frameworks. Chem Soc Rev 2013; 42(4): 1807-24. doi: 10.1039/C2CS35320B PMID: 23192676
  95. Hu P, Morabito JV, Tsung CK. Core–shell catalysts of metal nanoparticle core and metal–organic framework shell. ACS Catal 2014; 4(12): 4409-19. doi: 10.1021/cs5012662
  96. Schröder F, Esken D, Cokoja M, et al. Ruthenium nanoparticles inside porous Zn4O(bdc)3 by hydrogenolysis of adsorbed Ru(cod)(cot): A solid-state reference system for surfactant-stabilized ruthenium colloids. J Am Chem Soc 2008; 130(19): 6119-30. doi: 10.1021/ja078231u PMID: 18402452
  97. Houk RJT, Jacobs BW, Gabaly FE, et al. Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. Nano Lett 2009; 9(10): 3413-8. doi: 10.1021/nl901397k PMID: 19757817
  98. Sadakiyo M, Yoshimaru S, Kasai H, Kato K, Takata M, Yamauchi M. A new approach for the facile preparation of metal–organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chem Commun 2016; 52(54): 8385-8. doi: 10.1039/C6CC02729F PMID: 27298045
  99. Yu Y, Mai J, Wang L, Li X, Jiang Z, Wang F. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture. Sci Rep 2014; 4(1): 5997. doi: 10.1038/srep05997 PMID: 25104324
  100. Cohen SM. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 2012; 112(2): 970-1000. doi: 10.1021/cr200179u PMID: 21916418
  101. Muldoon PF, Collet G, Eliseeva SV, Luo TY, Petoud S, Rosi NL. Ship-in-a-bottle preparation of long wavelength molecular antennae in lanthanide metal–organic frameworks for biological imaging. J Am Chem Soc 2020; 142(19): 8776-81. doi: 10.1021/jacs.0c01426 PMID: 32311264
  102. Aijaz A, Karkamkar A, Choi YJ, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic frame-work: A double solvents approach. J Am Chem Soc 2012; 134(34): 13926-9. doi: 10.1021/ja3043905 PMID: 22888976
  103. Yang Q, Xu Q, Jiang HL. Metal–organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem Soc Rev 2017; 46(15): 4774-808. doi: 10.1039/C6CS00724D PMID: 28621344
  104. Arul P, John SA. Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: New electrode material for the trace level determina-tion of nitrobenzene. J Electroanal Chem 2018; 829: 168-76. doi: 10.1016/j.jelechem.2018.10.014
  105. Qin G, Cao D, Wan X, Wang X, Kong Y. Polyvinylpyrrolidone-assisted synthesis of highly water-stable cadmium-based metal–organic framework nanosheets for the detection of metronidazole. RSC Advances 2021; 11(55): 34842-8. doi: 10.1039/D1RA05349C PMID: 35494769
  106. Zhao Y, Kornienko N, Liu Z, et al. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nano-crystals. J Am Chem Soc 2015; 137(6): 2199-202. doi: 10.1021/ja512951e PMID: 25622094
  107. Lu G, Li S, Guo Z, et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 2012; 4(4): 310-6. doi: 10.1038/nchem.1272 PMID: 22437717
  108. Chen L, Xu Q. Metal-organic framework composites for catalysis. Matter 2019; 1(1): 57-89. doi: 10.1016/j.matt.2019.05.018
  109. Kuo CH, Tang Y, Chou LY, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc 2012; 134(35): 14345-8. doi: 10.1021/ja306869j PMID: 22901021
  110. Liu H, Chang L, Bai C, Chen L, Luque R, Li Y. Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modu-lation: towards advanced heterogeneous nanocatalysts. Angew Chem Int Ed 2016; 55(16): 5019-23. doi: 10.1002/anie.201511009 PMID: 26970412
  111. Li X, Wu Z, Tao X, Li R, Tian D, Liu X. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal. J Hazard Mater 2022; 438: 129525. doi: 10.1016/j.jhazmat.2022.129525 PMID: 35816800
  112. Cao J, Yang Z, Xiong W, et al. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chem Eng J 2018; 353: 126-37. doi: 10.1016/j.cej.2018.07.060
  113. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006; 103(27): 10186-91. doi: 10.1073/pnas.0602439103 PMID: 16798880
  114. Orr KWP, Collins SM, Reynolds EM, et al. Single-step synthesis and interface tuning of core–shell metal–organic framework nanoparti-cles. Chem Sci 2021; 12(12): 4494-502. doi: 10.1039/D0SC03940C PMID: 34163714
  115. Lai C, Zhang M, Li B, et al. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem Eng J 2019; 358: 891-902. doi: 10.1016/j.cej.2018.10.072
  116. Liu L, Cui W, Lu C, et al. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups depend-ence of adsorption performance and mechanisms. J Environ Manage 2020; 268: 110630. doi: 10.1016/j.jenvman.2020.110630 PMID: 32510425
  117. Liu N, Shang Q, Gao K, Cheng Q, Pan Z. Construction of ZnO/ZIF-9 heterojunction photocatalyst: Enhanced photocatalytic performance and mechanistic insight. New J Chem 2020; 44(16): 6384-93. doi: 10.1039/D0NJ00510J
  118. Yuan R, Qiu J, Yue C, et al. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chem Eng J 2020; 401: 126020. doi: 10.1016/j.cej.2020.126020
  119. Li X, Zeng Z, Zeng G, et al. A “bottle-around-ship” like method synthesized yolk-shell Ag3PO4@MIL-53(Fe) Z-scheme photocatalysts for enhanced tetracycline removal. J Colloid Interface Sci 2020; 561: 501-11. doi: 10.1016/j.jcis.2019.11.025 PMID: 31735413
  120. Abazari R, Morsali A, Dubal DP. An advanced composite with ultrafast photocatalytic performance for the degradation of antibiotics by natural sunlight without oxidizing the source over TMU-5@Ni–Ti LDH: mechanistic insight and toxicity assessment. Inorg Chem Front 2020; 7(12): 2287-304. doi: 10.1039/D0QI00050G
  121. Askari N, Beheshti M, Mowla D, Farhadian M. Fabrication of CuWO4/Bi2S3/ZIF67 MOF: A novel double Z-scheme ternary heterostruc-ture for boosting visible-light photodegradation of antibiotics. Chemosphere 2020; 251: 126453. doi: 10.1016/j.chemosphere.2020.126453 PMID: 32443224
  122. He X, Nguyen V, Jiang Z, Wang D, Zhu Z, Wang WN. Highly-oriented one-dimensional MOF-semiconductor nanoarrays for efficient photodegradation of antibiotics. Catal Sci Technol 2018; 8(8): 2117-23. doi: 10.1039/C8CY00229K
  123. Yan D, Hu H, Gao N, Ye J, Ou H. Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution. Appl Surf Sci 2019; 498: 143836. doi: 10.1016/j.apsusc.2019.143836
  124. Racles C, Zaltariov MF, Silion M, Macsim AM, Cozan V. Photo-oxidative degradation of doxorubicin with siloxane MOFs by exposure to daylight. Environ Sci Pollut Res Int 2019; 26(19): 19684-96. doi: 10.1007/s11356-019-05288-7 PMID: 31081534
  125. He L, Dong Y, Zheng Y, Jia Q, Shan S, Zhang Y. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J Hazard Mater 2019; 361: 85-94. doi: 10.1016/j.jhazmat.2018.08.079 PMID: 30176419
  126. Li S, Cui J, Wu X, Zhang X, Hu Q, Hou X. Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. J Hazard Mater 2019; 373: 408-16. doi: 10.1016/j.jhazmat.2019.03.102 PMID: 30933863
  127. Cao HL, Cai FY, Yu K, Zhang YQ, Lü J, Cao R. Photocatalytic degradation of tetracycline antibiotics over CdS/nitrogen-doped–carbon composites derived from in situ carbonization of metal–organic frameworks. ACS Sustain Chem& Eng 2019; 7(12): 10847-54. doi: 10.1021/acssuschemeng.9b01685
  128. Li R, Li W, Jin C, He Q, Wang Y. Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation. J Alloys Compd 2020; 825: 154008. doi: 10.1016/j.jallcom.2020.154008
  129. He L, Zhang Y, Zheng Y, Jia Q, Shan S, Dong Y. Degradation of tetracycline by a novel MIL-101(Fe)/TiO2 composite with persulfate. J Porous Mater 2019; 26(6): 1839-50. doi: 10.1007/s10934-019-00778-y
  130. Wang C, Xue Y, Wang P, Ao Y. Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation. J Alloys Compd 2018; 748: 314-22. doi: 10.1016/j.jallcom.2018.03.129
  131. Deng L, Yin D, Khaing KK, et al. The facile boosting sunlight-driven photocatalytic performance of a metal–organic-framework through coupling with Ag2S nanoparticles. New J Chem 2020; 44(29): 12568-78. doi: 10.1039/D0NJ02030C
  132. Gao Y, Wu J, Wang J, Fan Y, Zhang S, Dai W. A novel multifunctional p-type semiconductor@ MOFs nanoporous platform for simulta-neous sensing and photodegradation of tetracycline. ACS Appl Mater Interfaces 2020; 12(9): 11036-44. doi: 10.1021/acsami.9b23314 PMID: 32048511
  133. Lv SW, Liu JM, Li CY, Zhao N, Wang ZH, Wang S. In situ growth of benzothiadiazole functionalized UiO-66-NH2 on carboxyl modified g-C3N4 for enhanced photocatalytic degradation of sulfamethoxazole under visible light. Catal Sci Technol 2020; 10(14): 4703-11. doi: 10.1039/D0CY01019G
  134. Chen WQ, Li LY, Li L, et al. MoS2/ZIF-8 hybrid materials for environmental catalysis: Solar-driven antibiotic-degradation engineering. Engineering 2019; 5(4): 755-67. doi: 10.1016/j.eng.2019.02.003
  135. Jahurul Islam M, Kim HK, Amaranatha Reddy D, et al. Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water. Dalton Trans 2017; 46(18): 6013-23. doi: 10.1039/C7DT00459A PMID: 28426035
  136. Subudhi S, Paramanik L, Sultana S, Mansingh S, Mohapatra P, Parida K. A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH2: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution. J Colloid Interface Sci 2020; 568: 89-105. doi: 10.1016/j.jcis.2020.02.043 PMID: 32088455
  137. He Y, Dong W, Li X, et al. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. J Colloid Interface Sci 2020; 574: 364-76. doi: 10.1016/j.jcis.2020.04.075 PMID: 32339819
  138. Wang H, Yuan X, Wu Y, et al. In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B 2016; 186: 19-29. doi: 10.1016/j.apcatb.2015.12.041
  139. Zhang S, Wang Y, Cao Z, et al. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites to-ward ofloxacin photo-degradation. Chem Eng J 2020; 381: 122771. doi: 10.1016/j.cej.2019.122771
  140. Du C, Zhang Z, Yu G, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere 2021; 272: 129501. doi: 10.1016/j.chemosphere.2020.129501 PMID: 33486457
  141. Abazari R, Mahjoub AR. Amine-functionalized Al-MOF#@ yx Sm2O3–ZnO: a visible light-driven nanocomposite with excellent photo-catalytic activity for the photo-degradation of amoxicillin. Inorg Chem 2018; 57(5): 2529-45. doi: 10.1021/acs.inorgchem.7b02880 PMID: 29446935
  142. Zhang Y, Zhou J, Chen X, Wang L, Cai W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient deg-radation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway. Chem Eng J 2019; 369: 745-57. doi: 10.1016/j.cej.2019.03.108
  143. Yang Z, Tong X, Feng J, et al. Flower-like BiOBr/UiO-66-NH2 nanosphere with improved photocatalytic property for norfloxacin re-moval. Chemosphere 2019; 220: 98-106. doi: 10.1016/j.chemosphere.2018.12.086 PMID: 30579953
  144. Wang D, Jia F, Wang H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interface Sci 2018; 519: 273-84. doi: 10.1016/j.jcis.2018.02.067 PMID: 29505989

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers