Review on the Role of Nanomaterials in Membrane Fabrication via Additive Manufacturing for Gas Separation


Cite item

Full Text

Abstract

Abstract:By virtue of the rapid development of technologies in the era of Industrial Revolution 4.0, additive manufacturing technology enables faster production, diverse raw materials, infinite shapes and geometries for fine products as compared to traditional manufacturing methods. Among many manufacturing materials, nanomaterials have attracted extensive attention due to their wide variety, high strength, and effect of catalytic, quantum, surface and boundary. From the aspect of an industrial manufacturing process, the practical advantages of using additive manufacturing techniques to fabricate nanomaterial-incorporated membranes for gas separation are valuable. This paper reviews the potential of using additive manufacturing in the fabrication of membranes incorporated with nanomaterials for gas separation.

About the authors

Linggao Shi

Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment,, UCSI University

Email: info@benthamscience.net

Ying Cheong

Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment,, UCSI University

Email: info@benthamscience.net

Li Lai

Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University

Author for correspondence.
Email: info@benthamscience.net

Swee Yeap

Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University

Email: info@benthamscience.net

Yin Yeong

CO2 Research Centre (CO2RES), Chemical Engineering Department,, Universiti Teknologi PETRONAS

Email: info@benthamscience.net

References

  1. Abbassian K, Kargari A. Modification of membrane formulation for stabilization of emulsion liquid membrane for extraction of phenol from aqueous solutions. J Environ Chem Eng 2016; 4(4): 3926-33. doi: 10.1016/j.jece.2016.08.030
  2. Majeed H, Svendsen HF. Characterization of aerosol emissions from CO2 capture plants treating various power plant and industrial flue gases. Int J Greenh Gas Control 2018; 74: 282-95. doi: 10.1016/j.ijggc.2018.04.016
  3. Zhimin H, Zhigang T, Ataeivarjovi E, Dong G, Zhijun Z, Hongwei L. Study on polydimethylsiloxane desorption membrane of CO 2 - Dimethyl carbonate System. Energy Procedia 2017; 118: 210-5. doi: 10.1016/j.egypro.2017.07.024
  4. Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. J Membr Sci 2010; 359(1-2): 115-25. doi: 10.1016/j.memsci.2009.11.040
  5. Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported poly-dimethylsiloxane membranes. Appl Surf Sci 2017; 413: 27-34. doi: 10.1016/j.apsusc.2017.04.006
  6. Shi L, Lai LS, Tay WH, Yeap SP, Yeong YF. Membrane fabrication for carbon dioxide separation: A critical review. ChemBioEng Rev 2022; 9(6): 556-73. doi: 10.1002/cben.202200035
  7. Qian X, Ravindran T, Lounder SJ, Asatekin A, McCutcheon JR. Printing zwitterionic self-assembled thin film composite membranes: Tuning thickness leads to remarkable permeability for nanofiltration. J Membr Sci 2021; 635: 119428. doi: 10.1016/j.memsci.2021.119428
  8. El-Sayegh S, Romdhane L, Manjikian S. A critical review of 3D printing in construction: Benefits, challenges, and risks. Arch Civ Mech Eng 2020; 20(2): 34. doi: 10.1007/s43452-020-00038-w
  9. Yanar N, Liang Y, Yang E, Park H, Son M, Choi H. Electrically polarized graphene-blended spacers for organic fouling reduction in forward osmosis. Membranes 2021; 11(1): 36. doi: 10.3390/membranes11010036 PMID: 33406616
  10. Sarwar Z, Yousef S, Tatariants M, et al. Fibrous PEBA-graphene nanocomposite filaments and membranes fabricated by extrusion and additive manufacturing. Eur Polym J 2019; 121: 109317. doi: 10.1016/j.eurpolymj.2019.109317
  11. Wang S, Gao H, Jin Y, et al. Defect engineering in novel broad-band gap hexaaluminate MAl12O19 (M=Ca, sr, Ba)-based photocatalysts boosts near ultraviolet and visible light-driven photocatalytic performance. Mater Today Chem 2022; 24: 100942. doi: 10.1016/j.mtchem.2022.100942
  12. Wang S, Li M, Yin Z, et al. Skillfully grafted C O functional group to enhance the adsorption/photocatalytic mechanism of YMnO3/MgAl2O4 heterojunction photocatalysts. Adv Powder Technol 2022; 33(11): 103771. doi: 10.1016/j.apt.2022.103771
  13. Wang S, Chen X, Fang L, et al. Double heterojunction CQDs/CeO2/BaFe12O19 magnetic separation photocatalysts: Construction, structural characterization, dye and POPs removal, and the interrelationships between magnetism and photocatalysis. Nuclear Analysis 2022; 1(3): 100026. doi: 10.1016/j.nucana.2022.100026
  14. Georgantzinos SK, Giannopoulos GI, Bakalis PA. Additive manufacturing for effective smart structures: The idea of 6D printing. J Com-posit Sci 2021; 5(5): 119. doi: 10.3390/jcs5050119
  15. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4): MR17-71. doi: 10.1116/1.2815690 PMID: 20419892
  16. Saleh TA. Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Innov 2020; 20: 101067. doi: 10.1016/j.eti.2020.101067
  17. Stone V, Nowack B, Baun A, et al. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 2010; 408(7): 1745-54. doi: 10.1016/j.scitotenv.2009.10.035 PMID: 19903569
  18. Sudha PN, Sangeetha K, Vijayalakshmi K, et al. Nanomaterials history, classification, unique properties, production and market.In: Emerging applications of nanoparticles and architecture nano- structures. Amsterdam: Elsevier 2018; pp. 341-84. doi: 10.1016/B978-0-323-51254-1.00012-9
  19. Buzea C, Pacheco I. Nanomaterials and their classification.In EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Berlin: Springer 2017; pp. 3-45. doi: 10.1007/978-81-322-3655-9_1
  20. Rizwan M, Shoukat A, Ayub A, et al. Types and classification of nanomaterials.In Synthesis, Characterization, Hazards and Safety. Amsterdam: Elsevier 2021; pp. 31-54. doi: 10.1016/B978-0-12-823823-3.00001-X
  21. Trotta F, Mele A. Nanomaterials: Classification and properties, nanosponges: Synthesis and applications. (1st ed.), London: Wiley 2019. doi: 10.1002/9783527341009
  22. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74. doi: 10.3762/bjnano.9.98 PMID: 29719757
  23. Pacheco MJ, Vences LJ, Moreno H, Pacheco JO, Valdivia R, Hernández C. Review: Mixed-matrix membranes with CNT for CO2 separa-tion processes. Membranes 2021; 11(6): 457. doi: 10.3390/membranes11060457 PMID: 34205664
  24. Ali A, Pothu R, Siyal SH, Phulpoto S, Sajjad M, Thebo KH. Graphene-based membranes for CO2 separation. Mater Sci Energy Technol 2019; 2(1): 83-8. doi: 10.1016/j.mset.2018.11.002
  25. Yan L, Liu C, Xia J, et al. CNTs/TiO2 composite membrane with adaptable wettability for on-demand oil/water separation. J Clean Prod 2020; 275: 124011. doi: 10.1016/j.jclepro.2020.124011
  26. Du C, Wang Z, Liu G, Wang W, Yu D. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids Surf A Physicochem Eng Asp 2021; 624: 126790. doi: 10.1016/j.colsurfa.2021.126790
  27. Zhao Y, Tian H, Ouyang Y, et al. Poly (Vinyl Alcohol) composite membrane with polyamidoamine dendrimers for efficient separation of CO2/H2 and CO2/N2. J Polym Environ 2022; 30(10): 4193-200. doi: 10.1007/s10924-022-02491-5
  28. Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Metal–Organic frameworks as platforms for functional materials. Acc Chem Res 2016; 49(3): 483-93. doi: 10.1021/acs.accounts.5b00530 PMID: 26878085
  29. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995; 378(6558): 703-6. doi: 10.1038/378703a0
  30. Feng L, Wang KY, Day GS, Ryder MR, Zhou HC. Destruction of metal–organic frameworks: Positive and negative aspects of stability and lability. Chem Rev 2020; 120(23): 13087-133. doi: 10.1021/acs.chemrev.0c00722 PMID: 33049142
  31. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013; 341(6149): 1230444. doi: 10.1126/science.1230444 PMID: 23990564
  32. Hou CC, Xu Q. Metal–organic frameworks for energy. Adv Energy Mater 2019; 9(23): 1801307. doi: 10.1002/aenm.201801307
  33. Mazari SA, Ali E, Abro R, et al. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review. J Environ Chem Eng 2021; 9(2): 105028. doi: 10.1016/j.jece.2021.105028
  34. Peng Z, Liu X, Zhang W, et al. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Environ Int 2020; 134: 105298. doi: 10.1016/j.envint.2019.105298 PMID: 31765863
  35. Parashar M, Shukla VK, Singh R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applica-tions. J Mater Sci Mater Electron 2020; 31(5): 3729-49. doi: 10.1007/s10854-020-02994-8
  36. Li Z, Hou B, Xu Y, et al. Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles. J Solid State Chem 2005; 178(5): 1395-405. doi: 10.1016/j.jssc.2004.12.034
  37. Liu H, Wang S, Gao H, et al. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies. Separ Purif Tech 2022; 281: 119855. doi: 10.1016/j.seppur.2021.119855
  38. Feng X, Yang Z, Chmely S, Wang Q, Wang S, Xie Y. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization. Carbohydr Polym 2017; 169: 272-81. doi: 10.1016/j.carbpol.2017.04.001 PMID: 28504146
  39. Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC. 3D printing biocompatible polyurethane/poly (lactic ac-id)/graphene oxide nanocomposites: Anisotropic properties. ACS Appl Mater Interfaces 2017; 9(4): 4015-23. doi: 10.1021/acsami.6b11793 PMID: 28026926
  40. V.S. Abhisha, V.P. Swapna, R. Stephen. Transport properties of polymeric membranes. Amsterdam: Elsevier 2017.
  41. Zhang J, Schott JA, Mahurin SM, Dai S. Porous structure design of polymeric membranes for gas separation. Small Methods 2017; 1(5): 1600051. doi: 10.1002/smtd.201600051
  42. Rezakazemi M, Younas M. Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture. New Jersey, USA: John Wiley & Sons 2021.
  43. Ismail AF, Khulbe KC, Matsuura T. Gas Separation Membranes. Berlin: Springer 2015; pp. 37-192.
  44. Sethu Lakshmi MB, Francis B. Transport properties of polymeric membranes. Amsterdam: Elsevier 2018; pp. 349-61.
  45. Freeman B, Yampolskii Y. Membrane gas separation. New Jersey, USA: John Wiley & Sons 2011.
  46. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013; 326: 77-95. doi: 10.1016/j.desal.2013.06.016
  47. Kahrs C, Schwellenbach J. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. Polymer 2020; 186: 122071. doi: 10.1016/j.polymer.2019.122071
  48. Tan X, Rodrigue D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vi-nylidene fluoride). Polymers 2019; 11(7): 1160. doi: 10.3390/polym11071160 PMID: 31288433
  49. Ismail N, Venault A, Mikkola JP, Bouyer D, Drioli E, Tavajohi Hassan Kiadeh N. Investigating the potential of membranes formed by the vapor induced phase separation process. J Membr Sci 2020; 597: 117601. doi: 10.1016/j.memsci.2019.117601
  50. Raaijmakers MJT, Benes NE. Current trends in interfacial polymerization chemistry. Prog Polym Sci 2016; 63: 86-142. doi: 10.1016/j.progpolymsci.2016.06.004
  51. Song Y, Fan JB, Wang S. Recent progress in interfacial polymerization. Mater Chem Front 2017; 1(6): 1028-40. doi: 10.1039/C6QM00325G
  52. Wang L, Yang G, Peng S, Wang J, Yan W, Ramakrishna S. One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. Energy Storage Mater 2020; 25: 443-76. doi: 10.1016/j.ensm.2019.09.036
  53. Lu X, Wang C, Wei Y. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small 2009; 5(21): 2349-70. doi: 10.1002/smll.200900445 PMID: 19771565
  54. Yuan S, Strobbe D, Kruth JP, Van Puyvelde P, Van der Bruggen B. Production of polyamide-12 membranes for microfiltration through selective laser sintering. J Membr Sci 2017; 525: 157-62. doi: 10.1016/j.memsci.2016.10.041
  55. Ray SS, Dommati H, Wang JC, Chen S-S. Solvent based slurry stereolithography 3D printed hydrophilic ceramic membrane for ultrafiltration application. Ceram Int (Part B) 2020; 46(8): 12480-8. doi: 10.1016/j.ceramint.2020.02.010
  56. Mustapha KB, Metwalli KM. A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur Polym J 2021; 156: 110591. doi: 10.1016/j.eurpolymj.2021.110591
  57. Qian X, Ostwal M, Asatekin A, et al. A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. J Membr Sci 2022; 645: 120041. doi: 10.1016/j.memsci.2021.120041
  58. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D Printing of polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 2021; 13(18): 3101. doi: 10.3390/polym13183101 PMID: 34578002
  59. Low ZX, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 2017; 523: 596-613. doi: 10.1016/j.memsci.2016.10.006
  60. Pereira GG, Figueiredo S, Fernandes AI, Pinto JF. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics 2020; 12(9): 795. doi: 10.3390/pharmaceutics12090795 PMID: 32842703
  61. Koo JW, Ho JS, An J, Zhang Y, Chua CK, Chong TH. A review on spacers and membranes: Conventional or hybrid additive manufactur-ing. Water Res 2021; 188: 116497. doi: 10.1016/j.watres.2020.116497 PMID: 33075598
  62. T. Sathies, P. Senthil, M. Anoop. A review on advancements in applications of fused deposition modelling process. Rapid Prototyping Journal 2020; 26(4): 669-87.
  63. Mohan N, Senthil P, Vinodh S, Jayanth N. A review on composite materials and process parameters optimisation for the fused deposi-tion modelling process. Virtual Phys Prototyp 2017; 12(1): 47-59. doi: 10.1080/17452759.2016.1274490
  64. Vyavahare S, Teraiya S, Panghal D, Kumar S. Fused deposition modelling: A review. Rapid Prototyping J 2020; 26(1): 176-201. doi: 10.1108/RPJ-04-2019-0106
  65. Mwema FM, Akinlabi ET. Fused deposition modeling: Strategies for quality enhancement. New York, USA: Springer Nature 2020. doi: 10.1007/978-3-030-48259-6
  66. Baca Lopez DM, Ahmad R. Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling. Polymers 2020; 12(3): 651. doi: 10.3390/polym12030651 PMID: 32178343
  67. Liu Z, Wang Y, Shi J. Tensile performance of fused deposition modeling PA 6 polymer composites with nanoparticle reinforcement and/or continuous fiber reinforcement. J Micro Nano-Manufact 2019; 7(4): 041001. doi: 10.1115/1.4044913
  68. Wu H, Chen P, Yan C, Cai C, Shi Y. Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light pro-cessing. Mater Des 2019; 171: 107704. doi: 10.1016/j.matdes.2019.107704
  69. Wang CC, Chen JY, Wang J. The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing. J Biomed Mater Res A 2022; 110(1): 204-16. doi: 10.1002/jbm.a.37277 PMID: 34397160
  70. Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater 2017; 29(15): 1606000. doi: 10.1002/adma.201606000 PMID: 28169466
  71. Clarissa WH-Y, Chia CH, Zakaria S, et al. Recent advancement in 3-D printing: Nanocomposites with added functionality. Prog Addit Manufact 2021; pp. 1-26.
  72. Ko H, Yi H, Jeong HE. Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (uni-climb). Int J Precis Engin Manufact-Green Technol 2017; 4(3): 273-80. doi: 10.1007/s40684-017-0033-y
  73. Gu H, Li G, Li P, et al. Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation. Appl Surf Sci 2020; 512: 144837. doi: 10.1016/j.apsusc.2019.144837
  74. Pezzana L, Riccucci G, Spriano S, Battegazzore D, Sangermano M, Chiappone A. 3D printing of pdms-like polymer nanocomposites with enhanced thermal conductivity: Boron nitride based photocuring system. Nanomaterials 2021; 11(2): 373. doi: 10.3390/nano11020373 PMID: 33540598
  75. Kim H, Johnson J, Chavez LA, Garcia Rosales CA, Tseng T-LB, Lin Y. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram Int 2018; 44(8): 9037-44. doi: 10.1016/j.ceramint.2018.02.107
  76. Fielding G, Bose S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds en-hance osteogenesis and angiogenesis in vivo. Acta Biomater 2013; 9(11): 9137-48. doi: 10.1016/j.actbio.2013.07.009 PMID: 23871941
  77. Roopavath UK, Soni R, Mahanta U, Deshpande AS, Rath SN. 3D printable SiO 2 nanoparticle ink for patient specific bone regeneration. RSC Advances 2019; 9(41): 23832-42. doi: 10.1039/C9RA03641E PMID: 35530605
  78. Wang L, Ni X. The effect of the inorganic nanomaterials on the UV-absorption, rheological and mechanical properties of the rapid proto-typing epoxy-based composites. Polym Bull 2017; 74(6): 2063-79. doi: 10.1007/s00289-016-1825-x
  79. Xiong H, Liu Z, Chen X, et al. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science 2022; 376(6592): 491-6. doi: 10.1126/science.abn7667 PMID: 35482872
  80. Li P, Wang Z, Qiao Z, et al. Recent developments in membranes for efficient hydrogen purification. J Membr Sci 2015; 495: 130-68. doi: 10.1016/j.memsci.2015.08.010
  81. V.S. Abhisha, V.P. Swapna, R. Stephen. Transport properties of polymeric membranes. Amsterdam: Elsevier 2017; pp. 391-423.
  82. Ismail AF, Salleh WNW, Yusof N. Synthetic polymeric membranes for advanced water treatment, gas separation, and energy sustainabil-ity. Amsterdam: Elsevier 2020.
  83. Tavakoli A, Rahimi K, Saghandali F, Scott J, Lovell E. Nanofluid preparation, stability and performance for CO2 absorption and desorp-tion enhancement: A review. J Environ Manage 2022; 313: 114955. doi: 10.1016/j.jenvman.2022.114955 PMID: 35405543
  84. Wang JG, Hu B, Wu D, Dou F, Wang X. A multiscale fractal transport model with multilayer sorption and effective porosity effects. Transp Porous Media 2019; 129(1): 25-51. doi: 10.1007/s11242-019-01276-0
  85. Lei L, Pan F, Lindbråthen A, et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superi-or hydrogen separation. Nat Commun 2021; 12(1): 268. doi: 10.1038/s41467-020-20628-9 PMID: 33431865
  86. Zainuddin M I F, Ahmad A L. Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture. J CO2 Utilization 2022; 62: 102094. doi: 10.1016/j.jcou.2022.102094
  87. Kim S, Lee YM. High performance polymer membranes for CO2 separation. Curr Opin Chem Eng 2013; 2(2): 238-44. doi: 10.1016/j.coche.2013.03.006
  88. Schakel W, Orregioni G, Strømman A, Ramirez A. Impact of fuel selection on techno-environmental performance of post-combustion calcium looping process applied to a cement plant. Energy Procedia 2017; 114: 6215-21. doi: 10.1016/j.egypro.2017.03.1759
  89. Ji Y, Zhang M, Guan K, Zhao J, Liu G, Jin W. High‐performance CO2 capture through polymer‐based ultrathin membranes. Adv Funct Mater 2019; 29(33): 1900735. doi: 10.1002/adfm.201900735
  90. Ansari A, Navarchian AH, Rajati H. Permselectivity improvement of PEBAX ® 2533 membrane by addition of glassy polymers (Matri-mid® and polystyrene) for CO2/N2 separation. J Appl Polym Sci 2022; 139(4): 51556. doi: 10.1002/app.51556
  91. Li P, Chen HZ, Chung TS. The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber mem-branes for CO2/N2 and O2/N2 separation. J Membr Sci 2013; 434: 18-25. doi: 10.1016/j.memsci.2013.01.042
  92. Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydime-thylsiloxane membranes for CO2 separation. J Colloid Interface Sci 2018; 510: 12-9. doi: 10.1016/j.jcis.2017.09.048 PMID: 28926724
  93. Jue ML, Breedveld V, Lively RP. Defect-free PIM-1 hollow fiber membranes. J Membr Sci 2017; 530: 33-41. doi: 10.1016/j.memsci.2017.02.012
  94. Althumayri K, Harrison WJ, Shin Y, et al. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. Philos Trans- Royal Soc, Math Phys Eng Sci 2016; 374(2060): 20150031. doi: 10.1098/rsta.2015.0031 PMID: 26712643
  95. Paolini A, Kollmannsberger S, Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit Manuf 2019; 30: 100894. doi: 10.1016/j.addma.2019.100894
  96. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applica-tions and challenges. Compos, Part B Eng 2018; 143: 172-96. doi: 10.1016/j.compositesb.2018.02.012
  97. Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Compos Struct 2017; 182: 36-53. doi: 10.1016/j.compstruct.2017.08.088
  98. Tijing LD, Dizon JRC, Ibrahim I, Nisay ARN, Shon HK, Advincula RC. 3D printing for membrane separation, desalination and water treatment. Appl Mater Today 2020; 18: 100486. doi: 10.1016/j.apmt.2019.100486
  99. Wen Y, Xun S, Haoye M, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomater Sci 2017; 5(9): 1690-8. doi: 10.1039/C7BM00315C PMID: 28686244
  100. Gumrah Dumanli A. Nanocellulose and its composites for biomedical applications. Curr Med Chem 2017; 24(5): 512-28. doi: 10.2174/0929867323666161014124008 PMID: 27758719
  101. Worawit C, Cocovi-Solberg DJ, Varanusupakul P, Miró M. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase mi-croextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and anal-ysis: A proof of concept study. Talanta 2018; 185: 611-9. doi: 10.1016/j.talanta.2018.04.007 PMID: 29759249
  102. Cao M, Gu F, Rao C, Fu J, Zhao P. Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5. Sci Total Environ 2019; 666: 1011-21. doi: 10.1016/j.scitotenv.2019.02.207 PMID: 30970468

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers