Formulation and Optimization of Polyherbal Nanogel for Dermatological Applications
- Authors: Dev S.1, Choudhury P.2, Srivastava R.3, Rathore V.4
-
Affiliations:
- Pacific College of Pharmacy, Pacific Academy of Higher Education and Research University
- Department of Pharmaceutical Science, Mohanlal Sukhadia University
- Faculty of Pharmacy, Moradabad Educational Trust Group of Institutions
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University
- Issue: Vol 9, No 1 (2024)
- Pages: 70-82
- Section: Materials Science and Nanotechnology
- URL: https://rjonco.com/2405-4615/article/view/646234
- DOI: https://doi.org/10.2174/2405461508666230324084617
- ID: 646234
Cite item
Full Text
Abstract
Aim:The aim of the present investigation was to develop a polyherbal nano gel (PHNG) formulation capable of acting as a potential vehicle to deliver polyherbal phytoconstituents topically.
Background:Individual herbs, according to Ayurveda, are insufficient to deliver the intended medicinal effect. It will have a better therapeutic impact with less toxicity when it is optimized as multiple herb combinations in a certain ratio.
Objective:The objective of this study was to create a polyherbal gel for the delivery of medication from methanolic extracts of Plumbago zeylanica Linn, Datura stramonium Linn, and Argemone mexicana Linn.
Material and Methods:The plant parts chosen for this work include methanolic extracts of Plumbago zeylanica stem, Datura stramonium leaves, Argimone Mexicana areal part. The polyherbal-based nanogel was prepared by low energy self-emulsification technique, and was evaluated for pH, viscosity and spreadability, stability, and drug release. The drug release profile of stable nanogel formulations was studied at various time intervals. Furthermore, the prepared nanogel was characterized by zeta-potential, zeta-sizer, and transmission electron microscopy (TEM).
Result:Optimized PHNG had particle size and zeta potential of 11.25nm and -25.73 mV respectively. TEM analysis of optimized formulation revealed the spherical shape of particles. Furthermore, the optimized formulation was found to possess higher stability with a maximum extended cumulative release of up to 240 minutes.
Conclusion:We have formulated a polyherbal nanogel that can be validated by physiochemical and surface characterization.
Keywords
About the authors
Suresh Dev
Pacific College of Pharmacy, Pacific Academy of Higher Education and Research University
Author for correspondence.
Email: info@benthamscience.net
Pratim Choudhury
Department of Pharmaceutical Science, Mohanlal Sukhadia University
Email: info@benthamscience.net
Rajnish Srivastava
Faculty of Pharmacy, Moradabad Educational Trust Group of Institutions
Email: info@benthamscience.net
Vaibhav Rathore
Department of Pharmaceutical Sciences, Mohanlal Sukhadia University
Email: info@benthamscience.net
References
- Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew Chem Int Ed 2009; 48(30): 5418-29. doi: 10.1002/anie.200900441 PMID: 19562807
- Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27. doi: 10.1038/nrd4333 PMID: 25287120
- García MC, Cuggino JC. Stimulus-responsive nanogels for drug delivery.In Stimuli responsive polymeric nanocarriers for drug delivery applications. New Delhi: Woodhead Publishing 2018; 1: pp. 321-41. doi: 10.1016/B978-0-08-101997-9.00016-3
- Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003. doi: 10.1038/nmat3776 PMID: 24150417
- Ayame H, Morimoto N, Akiyoshi K. Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem 2008; 19(4): 882-90. doi: 10.1021/bc700422s PMID: 18336000
- McAllister K, Sazani P, Adam M, et al. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J Am Chem Soc 2002; 124(51): 15198-207. doi: 10.1021/ja027759q PMID: 12487595
- Malmsten M. Soft drug delivery systems. Soft Matter 2006; 2(9): 760-9. doi: 10.1039/b608348j PMID: 32680216
- Napier ME, DeSimone JM. Nanoparticle drug delivery platform. J Macromol Sci Part C Polym Rev 2007; 47(3): 321-7.
- Siegwart DJ, Oh JK, Matyjaszewski K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 2012; 37(1): 18-37. doi: 10.1016/j.progpolymsci.2011.08.001 PMID: 23525884
- Woodcock J, Griffin JP, Behrman RE. Development of novel combination therapies. N Engl J Med 2011; 364(11): 985-7. doi: 10.1056/NEJMp1101548 PMID: 21323535
- Desale SS, Cohen SM, Zhao Y, Kabanov AV, Bronich TK. Biodegradable hybrid polymer micelles for combination drug therapy in ovar-ian cancer. J Control Release 2013; 171(3): 339-48. doi: 10.1016/j.jconrel.2013.04.026 PMID: 23665258
- Desale SS, Raja SM, Kim JO, et al. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models. J Control Release 2015; 208: 59-66. doi: 10.1016/j.jconrel.2015.02.001 PMID: 25660204
- Park J, Wrzesinski SH, Stern E, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhanc-es tumour immunotherapy. Nat Mater 2012; 11(10): 895-905. doi: 10.1038/nmat3355 PMID: 22797827
- Kamolratanakul P, Hayata T, Ezura Y, et al. Nanogel-based scaffold delivery of prostaglandin E2 receptor-specific agonist in combina-tion with a low dose of growth factor heals critical-size bone defects in mice. Arthritis Rheum 2011; 63(4): 1021-33. doi: 10.1002/art.30151 PMID: 21190246
- Glangchai LC, Caldorera-Moore M, Shi L, Roy K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 2008; 125(3): 263-72. doi: 10.1016/j.jconrel.2007.10.021 PMID: 18053607
- Kersey FR, Merkel TJ, Perry JL, Napier ME, DeSimone JM. Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir 2012; 28(23): 8773-81. doi: 10.1021/la301279v PMID: 22612428
- Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 2010 Dec; 10(6): 366-76. Epub 2010 Sep 10 doi: 10.1002/tcr.201000008 PMID: 20836092 doi: 10.1002/tcr.201000008 PMID: 20836092
- Water JJ, Kim Y, Maltesen MJ, Franzyk H, Foged C, Nielsen HM. Hyaluronic acid-based nanogels produced by microfluidics-facilitated self-assembly improves the safety profile of the cationic host defense peptide novicidin. Pharm Res 2015; 32(8): 2727-35. doi: 10.1007/s11095-015-1658-6 PMID: 25813840
- Lai H, Wu P. A infrared spectroscopic study on the mechanism of temperature-induced phase transition of concentrated aqueous solu-tions of poly(N-isopropylacrylamide) and N-isopropylpropio- namide. Polymer (Guildf) 2010; 51(6): 1404-12. doi: 10.1016/j.polymer.2010.01.036
- Jochum FD, Theato P. Temperature- and light-responsive smart polymer materials. Chem Soc Rev 2013; 42(17): 7468-83. doi: 10.1039/C2CS35191A PMID: 22868906
- Mok H, Jeong H, Kim SJ, Chung BH. Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes. Chem Commun (Camb) 2012; 48(69): 8628-30. doi: 10.1039/c2cc33555g PMID: 22745939
- Dev SK, Choudhury PK, Srivastava R, Sharma M. Phytochemical characterization and antioxidant assessment of herbal extracts. J Drug Deliv Ther 2018; 8(4): 126-33. doi: 10.22270/jddt.v8i4.1736
- Mauri E, Giannitelli SM, Trombetta M, Rainer A. Synthesis of nanogels: Current trends and future outlook. Gels 2021; 7(2): 36. doi: 10.3390/gels7020036 PMID: 33805279
- Rosso AP, Martinelli M. Nanogels and dendritic molecules combined to form a smart nanomaterial. Eur Polym J 2022; 162: 110874. doi: 10.1016/j.eurpolymj.2021.110874
- Sindhu RK, Gupta R, Wadhera G, Kumar P. Modern herbal nanogels: Formulation, delivery methods, and applications. Gels 2022; 8(2): 97. doi: 10.3390/gels8020097 PMID: 35200478
- Tariq L, Arafah A, Ali S, et al. Nanogel-based transdermal drug delivery system: A therapeutic strategy with under discussed potential. Curr Top Med Chem 2023; 23(1): 44-61. doi: 10.2174/1568026622666220818112728 PMID: 35984019
- Ahmed S, Alhareth K, Mignet N. Advancement in nanogel formulations provides controlled drug release. Int J Pharm 2020; 584: 119435. doi: 10.1016/j.ijpharm.2020.119435 PMID: 32439585
- Berkov S, Pavlov A, Kovatcheva P, Stanimirova P, Philipov S. Alkaloid spectrum in diploid and tetraploid hairy root cultures of Datura stramonium. Z Naturforsch C J Biosci 2003; 58(1-2): 42-6. doi: 10.1515/znc-2003-1-207 PMID: 12622224
- Nayak PS, Kar DM, Nayak SP. Isolation and characterization of stigmasterol from chloroform fraction of aerial part of Argemone mexi-cana L. Int J Pharm Pharm Sci 2015; 7: 25-9.
- Azman NAN, Alhawarri MB, Rawa MSA, et al. Potential anti-acetylcholinesterase activity of Cassia timorensis DC. Molecules 2020; 25(19): 4545. doi: 10.3390/molecules25194545 PMID: 33020403
- Cinelli MA, Jones AD. Alkaloids of the genus datura: Review of a rich resource for natural product discovery. Molecules 2021; 26(9): 2629. doi: 10.3390/molecules26092629 PMID: 33946338
- Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics 2020; 12(3): 290. doi: 10.3390/pharmaceutics12030290 PMID: 32210184
- Reisbeck F, Wedepohl S, Dimde M, et al. Synthesis and functionalization of dendritic polyglycerol-based nanogels: application in T cell activation. J Mater Chem B Mater Biol Med 2021; 10(1): 96-106. doi: 10.1039/D1TB02144C PMID: 34881771
- Zeng Q, Zeng W, Jin Y, Sheng L. Construction and evaluation of ovalbumin-pullulan nanogels as a potential delivery carrier for curcu-min. Food Chem 2022; 367: 130716. doi: 10.1016/j.foodchem.2021.130716 PMID: 34384981
- Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57. doi: 10.3390/pharmaceutics10020057 PMID: 29783687
- Suhaimi SH, Hasham R, Rosli NA. Effects of formulation parameters on particle size and polydispersity index of orthosiphon stamineus loaded nanostructured lipid carrier. J Adv Res Appl Sci Engineer Technol 2015; 1(1): 36-9.
- Gu L, Sun R, Wang W, Xia Q. Nanostructured lipid carriers for the encapsulation of phloretin: preparation and in vitro characterization studies. Chem Phys Lipids 2022; 242: 105150. doi: 10.1016/j.chemphyslip.2021.105150 PMID: 34673008
- Yuan Y, Zhang S, Ma M, Wang D, Xu Y. Encapsulation and delivery of curcumin in cellulose nanocrystals nanoparticles using pH-driven method. Lebensm Wiss Technol 2022; 155: 112863. doi: 10.1016/j.lwt.2021.112863
- Teaima MH, Alsofany JM, El-Nabarawi MA. Clove oil endorsed transdermal flux of dronedarone hydrochloride loaded bilosomal nano-gel: Factorial design, in vitro evaluation and ex vivo permeation. AAPS PharmSciTech 2022; 23(6): 182. doi: 10.1208/s12249-022-02337-2 PMID: 35773361
- Gaikwad SS, Akalade NV, Salunkhe KS. Nanogel Development and its Application in Transdermal Drug Delivery System. Curr Nanomed 2022; 12(2): 126-36. doi: 10.2174/2468187312666220630152606
Supplementary files
