An Exceptional Valorization of CuO Nanoparticles in Ionic Liquids as an Efficient Medium for the Electrophilic Substitution of Indole Towards the Formation of Bis(indolyl)methanes


Cite item

Full Text

Abstract

Aim:Ionic liquids are promising green solvents with simple but unique structure-related physical properties such as negligible vapour pressure, exceptional thermal conductivity, remarkable thermal stability and their suitability and inertness towards a broad range of catalytic applications. CuO NPs have been addressed as a cost-effective and a reagent of a choice that necessitates only mild reaction conditions to offer a high yield of the desired products with exceptional selectivity in a short duration of time. Therefore, in the present work, attempts have been made to explore the catalytic potentials of CuO NPs in an ionic liquid medium to synthesize biologically important bis(indolyl)methanes.

Background:Catalytic explorations of metal oxide nanoparticles in ionic liquids offers a cooperative effect that has a significant impact on the kinetics as well as on the outcome of the reaction. Therefore, such catalytic systems in the present times have seized the scientific community's interest from the perspectives of sustainable development in synthetic organic chemistry. The combination of metal oxide nanoparticles with highly tunable ionic liquids is not only used to synthesize simple organic molecules but also explored in the synthesis of complex organic molecules of high commercial and biological relevance.

Objectives:The current work offers a rapid and robust protocol for synthesizing bis(indolyl)methanes via electrophilic substitution reaction between indole and various aldehydes in the presence of a CuO nanoparticles-ionic liquid system. The discussion focuses on the high tolerance of different functionalities by the catalytic system leading to the synthesis of bis(indolyl)methanes.

Methods:CuO NPs have been synthesized via the co-precipitation method using ionic liquid. The applicability of metal oxide nanoparticles-IL matrix was further investigated in synthesizing bis(indolyl)methanes.

Results:The FT-IR absorption below 600 cm-1 and the XRD pattern showing all the peaks in the diffraction diagram revealed the formation of CuO NPs. FESEM images show the flake-shaped morphology of CuO NPs and are found to be separated from the agglomerated clusters

Conclusion:Ionic liquid-CuO NPs matrix reveals good to exceptional catalytic properties, and their advancements as a catalytic system at room temperature open new avenues for synthetic organic chemists.

About the authors

Sangita Bhirud

Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College

Email: info@benthamscience.net

Chandrakant Sarode

Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College

Email: info@benthamscience.net

Gaurav Gupta

Department of Chemistry, G.T.P. Arts, Commerce and Science College

Author for correspondence.
Email: info@benthamscience.net

Ganesh Chaudhari

Department of Chemistry, Arts and Science College

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mazaahir K, Neeraj Kumar M. Green Chemistry-Environmentally Benign Approaches. Croatia: InTech 2012. Available from: doi: 10.5772/1996
  2. Wu XF, Li Y. Transition Metal-Catalyzed Benzofuran Synthesis Transition Metal-Catalyzed Heterocycle Synthesis Series. US: Elsevier Inc. 2017.
  3. Gribble GW. Heterocyclic Scaffolds II: Reactions and Applications of Indoles. Berlin, Heidelberg: Springer-Verlag 2010. doi: 10.1007/978-3-642-15733-2
  4. Houlihan WJ. Indoles. Canada: John Wiley & Sons, Inc. 1972.
  5. Jiang H, Pan X, Huang L, Zhao J. Shi, D. Synthesis of 4H-cyclopentacfurans via cooperative PdCl2-FeCl2 catalyzed cascade cyclization reaction involving a novel acyl rearrangement process. Chem Commun (Camb) 2012; 48: 4698-700. doi: 10.1039/c2cc31138k PMID: 22473222
  6. Schumacher RF, Honraedt A, Bolm C. Synthesis of N-Methyl-2-indolyl- and N-methyl-2-benzobfuryl-substituted sulfoximines by Pd/Cu co-catalyzed domino cross-coupling/cyclization reactions. Eur J Org Chem 2012; 2012(20): 3737-41. doi: 10.1002/ejoc.201200573
  7. Wang Y, Liu L, Zhang L. Organic syntheses. Chem Sci (Camb) 2013; 4: 739-46. doi: 10.1039/C2SC21333H
  8. Sainsbury M. Heterocyclic Chemistry. UK: Royal Society of Chemistry 2001. doi: 10.1039/9781847551061
  9. Metz P. Stereoselective Heterocyclic Synthesis III. Berlin: Springer-Verlag 2001. doi: 10.1007/3-540-44726-1
  10. Joule JA, Mills K. Heterocyclic Chemistry. UK: John Wiley & Sons 2010.
  11. Joule JA, Mills K. Heterocyclic Chemistry at a Glance. UK: John Wiley & Sons 2013.
  12. Oparin AI. The Origin of Life. New York: Dover Publications, Inc. 1965.
  13. Hatti I, Tokala VNB. Synthesis, anti-cancer evaluation and molecular docking studies of aryl bisindole derivatives. Chem Data Collect 2020; 29: 100511. doi: 10.1016/j.cdc.2020.100511
  14. Meshram GA, Patil VD. Simple and efficient method for synthesis of bis(indolyl) methanes with Cu(BF4)2·SiO2 under mild conditions. Synth Commun 2009; 40(1): 29-38. doi: 10.1080/00397910902916064
  15. Khadkikar P, Goud NS, Mohammed A, et al. An efficient and facile green synthesis of bisindole methanes as potential Mtb FtsZ inhibitors. Chem Biol Drug Des 2018; 92(6): 1933-9. doi: 10.1111/cbdd.13363 PMID: 30003661
  16. Hui YH, Chen YC, Gong HW, Xie ZF. Convenient synthesis of bis(indolyl)alkanes by dithiocarbohydrazone Schiff base/Zn (ClO4)2·6H2O catalyzed Friedel–Crafts reaction of indoles with imines. Chin Chem Lett 2014; 25(1): 163-5. doi: 10.1016/j.cclet.2013.09.010
  17. Nguyen NK, Tuan HM, Yen BH, et al. Magnetically recyclable CuFe2O4 catalyst for efficient synthesis of bis(indolyl)methanes using indoles and alcohols under mild condition. Catal Commun 2020; 106240. doi: 10.1016/j.catcom.2020.106240
  18. Azizi N, Gholibeghlo E, Manocheri Z. Green procedure for the synthesis of bis(indolyl)methanes in water. Sci Iran 2012; 19(3): 574-8. doi: 10.1016/j.scient.2011.11.043
  19. Heravi MM, Bakhtiari K, Fatehi A, Bamoharram FF. A convenient synthesis of bis(indolyl)methanes catalyzed by diphosphooctadecatungstic acid. Catal Commun 2008; 9(2): 289-92. doi: 10.1016/j.catcom.2007.07.039
  20. Kokare ND, Sangshetti JN, Shinde DB. Oxalic acid as a catalyst for efficient synthesis of bis-(indolyl)methanes, and 14-aryl-14H-dibenzoa,jxanthenes in water. Chin Chem Lett 2008; 19(10): 1186-9. doi: 10.1016/j.cclet.2008.07.015
  21. Beltrá J, Gimeno MC, Herrera RP. A new approach for the synthesis of bisindoles through AgOTf as catalyst. Beilstein J Org Chem 2014; 10: 2206-14. doi: 10.3762/bjoc.10.228 PMID: 25246979
  22. Babu G, Sridhar N, Perumal PT. A convenient method of synthesis of bisindolylmethanes: Indium trichloride–catalysed reactions of indole with aldehydes and Schiff’s bases. Synth Commun 2000; 30(9): 1609-14. doi: 10.1080/00397910008087197
  23. Siadatifard SH, Abdoli-Senejani M, Bodaghifard MA. An efficient method for synthesis of bis(indolyl)methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS. Cogent Chem 2016; 2(1): 1188435. doi: 10.1080/23312009.2016.1188435
  24. Giri BY, Prabhavati Devi BLA, Vijayalakshmi K, Prasad RBN, Lingaiah N, Sai Prasad PS. A mild and efficient synthesis of bis(indolyl)methane derivatives catalyzed by monoammonium salt of 12-tungstophosphoric acid. Indian J Chem 2012; 51B: 1731-7.
  25. Srinivasa A, Nandeshwarappa BP, Kiran BM, Mahadevan KM. Antimony trichloride catalyzed condensation of indole and carbonyl compounds: Synthesis of Bis(indolyl)methanes. Phosphorus Sulfur Silicon Relat Elem 2008; 182(10): 2243-9. doi: 10.1080/10426500701418265
  26. Pawar RP, Bhagat DS, Shisodia SU, Bhosale HD, Pandule SS, Kendrekar PS. Rapid access to synthesis of bisindole derivatives using 2-morpholino ethanesulphonic acid. Academic J Chem 2016; 1(1): 26-32.
  27. Chakraborti AK, Roy SR, Kumar D, Chopra P. Catalytic application of room temperature ionic liquids: bmimMeSO4 as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem 2008; 10(10): 1111. doi: 10.1039/b807572g
  28. Das PJ, Das J. Synthesis of aryl/alkyl(2,2′-bis-3-methylindolyl) methanes and aryl(3,3′-bis indolyl)methanes promoted by secondary amine based ionic liquids and microwave irradiation. Tetrahedron Lett 2012; 53(35): 4718-20.
  29. Qureshi ZS, Deshmukh KM, Bhanage BM. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol Environ Policy 2014; 16(8): 1487-513. doi: 10.1007/s10098-013-0660-0
  30. Banothu J, Gali R, Velpula R, Bavantula R, Crooks PA. An eco-friendly improved protocol for the synthesis of bis(3-indolyl)methanes using poly(4-vinylpyridinium)hydrogen sulfate as efficient, heterogeneous, and recyclable solid acid catalyst. ISRN Org Chem 2013; 2013: 1-5. doi: 10.1155/2013/616932 PMID: 24052864
  31. Sadaphal S, Shelke K, Sonar S, Shingare M. Ionic liquid promoted synthesis of bis(indolyl) methanes. Open Chem 2008; 6(4): 622-6. doi: 10.2478/s11532-008-0069-5
  32. Tran PH, Nguyen XTT, Chau DKN. A brønsted-acidic ionic liquid gel as an efficient and recyclable heterogeneous catalyst for the synthesis of bis(indolyl)methanes under solvent-free sonication. Asian J Org Chem 2018; 7(1): 232-9. doi: 10.1002/ajoc.201700596
  33. Veisi H, Hemmati S, Veisi H. Highly efficient method for synthesis of bis(indolyl)methanes catalyzed by fecl 3− based ionic liquid. J Chin Chem Soc (Taipei) 2009; 56(2): 240-5. doi: 10.1002/jccs.200900034
  34. Wang X, Aldrich CC. Development of an imidazole salt catalytic system for the preparation of bis(indolyl)methanes and bis(naphthyl)methane. PLoS One 2019; 14(4): e0216008. doi: 10.1371/journal.pone.0216008 PMID: 31022274
  35. Choudhary S, Pandey K, Budania S, Kumar A. Functionalized ionic liquid-assisted chromatography-free synthesis of bis(indolyl)methanes. Mol Divers 2017; 21(1): 155-62. doi: 10.1007/s11030-016-9713-8 PMID: 28078549
  36. Ji SJ, Loh TP, Zhou MF, Gu DG, Wang SY. Efficient synthesis of bis(indolyl)methanes catalyzed by lewis acids in ionic liquids. Synlett 2003; (13): 2077-9. doi: 10.1055/s-2003-41464
  37. Fadavipoor E, Badri R, Kiasat A, Sanaeishoar H. Copper oxide nanoparticles supported on ionic liquid-modified magnetic nanoparticles: A novel magnetically recyclable catalyst for the synthesis of 3,4-dihydropyranocchromene derivatives. Polycycl Arom Compd 2018; 1-13. doi: 10.1080/10406638.2018.1526809
  38. Patil S, Mane A, Dhongade-Desai S. CuO nanoparticles as a reusable catalyst for the synthesis of 1H-pyrazolo1,2-bphthalazine-5,10-dione derivatives under solvent-free conditions. J Iran Chem Soc 2019; 16: 1665-75. doi: 10.1007/s13738-019-01640-3
  39. Mehrabi H, Kazemi-Mireki M. CuO nanoparticles: An efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyranocchromenes. Chin Chem Lett 2011; 22(12): 1419-22. doi: 10.1016/j.cclet.2011.06.003
  40. Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord Chem Rev 2017; 353: 1-57. doi: 10.1016/j.ccr.2017.10.004
  41. Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: Catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett 2017; 12(1): 638. doi: 10.1186/s11671-017-2399-8 PMID: 29282555
  42. Amaliyah S, Pangesti DP, Masruri M, Sabarudin A, Sumitro SB. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon 2020; 6(8): e04636. doi: 10.1016/j.heliyon.2020.e04636 PMID: 32793839
  43. Raut D, Wankhede K, Vaidya V, et al. Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction. Catal Commun 2009; 10(8): 1240-3. doi: 10.1016/j.catcom.2009.01.027
  44. Knapp R, Wyrzgol SA, Jentys A, Lercher JA. Water–gas shift catalysts based on ionic liquid mediated supported Cu nanoparticles. J Catal 2010; 276(2): 280-91. doi: 10.1016/j.jcat.2010.09.019
  45. Nador F, Volpe MA, Alonso F, Radivoy G. Synthesis of N-aryl imidazoles catalyzed by copper nanoparticles on nanosized silica-coated maghemite. Tetrahedron 2014; 70(36): 6082-7. doi: 10.1016/j.tet.2014.04.003
  46. Pai G, Chattopadhyay AP. N-Arylation of nitrogen containing heterocycles with aryl halides using copper nanoparticle catalytic system. Tetrahedron Lett 2016; 57(29): 3140-5. doi: 10.1016/j.tetlet.2016.06.019
  47. Yadav JS, Reddy BVS, Sunitha S. Efficient and eco-friendly process for the synthesis of bis(1h-indol-3-yl)methanes using ionic liquids. Adv Synth Catal 2003; 345(3): 349-52.
  48. Gardas RL, Dagade DH, Coutinho JAP, Patil KJ. Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium-based ionic liquids EmimBr and BmimCl. J Phys Chem B 2008; 112(11): 3380-9. doi: 10.1021/jp710351q PMID: 18302364
  49. Patil PP, Shaikh VR, Gupta GR, Patil PD, Borse AU, Patil KJ. Studies of viscosity coefficient and density properties of imidazolium based ionic liquids in aqueous solutions at different temperatures. ChemistrySelect 2018; 3(20): 5593-9. doi: 10.1002/slct.201800322
  50. Patil PD, Shaikh VR, Gupta GR, Hundiwale DG, Patil KJ. Studies of volumetric and viscosity properties in aqueous solutions of imidazolium based ionic liquids at different temperatures and at ambient pressure. J Solution Chem 2019; 48(1): 45-60. doi: 10.1007/s10953-019-00845-7
  51. Singh A, Raj T, Singh N. Highly selective and efficient reduction of nitroarenes by imidazolium salt stabilized copper nanoparticles in aqueous medium. Catal Lett 2015; 145(8): 1606-11. doi: 10.1007/s10562-015-1531-6
  52. Sarode CH, Gupta GR, Chaudhari GR, Waghulde GP, Waghulde GP. Investigations related to the suitability of imidazolium based room temperature ionic liquids and pyridinium based sponge ionic liquids towards the synthesis of 2-aminothiazole compounds as reaction medium and catalyst. Curr Green Chem 2018; 5(3): 191-7. doi: 10.2174/2213346105666181001111019
  53. Sarode C, Yeole S, Chaudhari G, Waghulde G, Gupta G. Development of the room temperature protocol based on room temperature ionic liquids and surfactant ionic liquids for the synthesis of derivatives of 2-amino-thiazoles and thermo- physical analysis of the synthesized derivatives using TGA-DSC. Curr Phys Chem 2021; 11(1): 18-26. doi: 10.2174/1877946810999200519102040
  54. Gupta GR, Chaudhari GR, Tomar PA, Waghulde GP, Patil KJ. Molten ammonium salt as a solvent for Menschutkin quaternization reaction (synthesis of ionic liquids) and other heterocyclic compounds. Asian J Chem 2012; 24(10): 4675-8.
  55. Tamaekong N, Liewhiran C, Phanichphant S. Synthesis of thermally spherical cuo nanoparticles. J Nanomater 2014; 2014: 1-5. doi: 10.1155/2014/507978
  56. Rangel WM, Boca Santa RAA, Riella HG. A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. J Mater Res Technol 2020; 9(1): 994-1004. doi: 10.1016/j.jmrt.2019.11.039
  57. Moradi L, Ataei Z. Efficient and green pathway for one-pot synthesis of spirooxindoles in the presence of CuO nanoparticles. Green Chem Lett Rev 2017; 10(4): 380-6. doi: 10.1080/17518253.2017.1390611
  58. Fardood ST, Ramazani A. Green synthesis and characterization of copper oxide nanoparticles using coffee powder extract. J Nanostruct 2016; 6(2): 167-71. doi: 10.7508/jns.2016.02.009
  59. Luna IZ, Hilary LN, Chowdhury AMS, Gafur MA, Khan N, Khan RA. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. OAlib 2015; 2(3): 1-8. doi: 10.4236/oalib.1101409
  60. Gawande MB, Goswami A, Felpin FX, Asefa T. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem Rev 2016; 116(6): 3722-811.
  61. Prakash S, Elavarasan N, Venkatesan A, Subashini K, Sowndharya M, Sujatha V. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv Powder Technol 2018; 29(12): 3315-26. doi: 10.1016/j.apt.2018.09.009
  62. Gupta G, Chaudhari G, Tomar P, et al. Synthesis of bis(indolyl)methanes using molten N-butylpyridinium bromide. Eur J Chem 2012; 3(4): 475-9. doi: 10.5155/eurjchem.3.4.475-479.709
  63. Gupta GR, Girase TR, Kapdi AR. Ionic liquid as a sustainable reaction medium for diels-alder reaction Encyclopedia of Ionic Liquids. Singapore: Springer 2019. doi: 10.1007/978-981-10-6739-6_27-1
  64. Tayebee R, Amini MM, Abdollahi N, Aliakbari A, Rabiei S, Ramshini H. Magnetic inorganic-organic hybrid nanomaterial for the catalytic preparation of bis(indolyl)aryl methanes under solvent free conditions: Preparation and characterization of H5PW10V2O40/pyridine –Fe3O4 nanoparticles. Appl Catal A Gen 2013; 468: 75-87. doi: 10.1016/j.apcata.2013.07.065
  65. Gupta GR, Patil PD, Shaikh VR, Kolhapurkar RR, Dagade DH, Patil KJ. Analytical estimation of water, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr Sci 2018; 114(12): 2525-9. doi: 10.18520/cs/v114/i12/2525-2529
  66. Ramsingh Girase T, Patil KJ, Kapdi AR, Gupta GR. Palladium acetate/CPyBr: An efficient catalytic system towards the synthesis of biologically relevant stilbene derivatives via heck cross‐coupling reaction. ChemistrySelect 2020; 5(14): 4251-62. doi: 10.1002/slct.201904837
  67. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR. Transition-metal nanoparticles in imidazolium ionic liquids: Recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 2002; 124(16): 4228-9. doi: 10.1021/ja025818u PMID: 11960449
  68. Mayank M, Singh A, Raj P, et al. Zwitterionic liquid (ZIL) coated CuO as an efficient catalyst for the green synthesis of bis-coumarin derivatives via one-pot multi-component reactions using mechanochemistry. New J Chem 2017; 41(10): 3872-81. doi: 10.1039/C6NJ03763A
  69. Gupta GR, Chaudhari GR, Tomar PA, et al. Mass spectrometry of ionic liquids: ESI-MS/MS studies. Asian J Chem 2013; 25(15): 8261-5. doi: 10.14233/ajchem.2013.14702

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers