The Antimicrobial Activity of Cu/CuxO Composites Synthesized by Thermal Oxidation of Copper Tablets


Cite item

Full Text

Abstract

Introduction:One of common bacteria is Staphylococcus aureus, which is a gram- positive, coagulasepositive, golden color in culture. That causes a wide range of clinical infections, resistance to β-lactam antibiotics.

Objectives:In this paper, we investigate the ability of copper nanoparticles in Cu/CuxO composites to inhibit Staphylococcus aureus bacteria and the effect of oxidation temperature on the inhibition efficacy.

Methods:Cu/CuxO composites were synthesized on the surfaces of copper samples by thermal oxidation of copper pressed tablets at various temperatures. The optical reflectivity spectra of the Cu/CuxO composites were measured. The edges of the plasma in these spectra were observed in the range 526-600 nm. In order to verify the antibacterial behavior of these composites, inhibition zone tests were realized for Staphylococcus aureus.

Results:The results showed that, the widest zone of inhibition was for the treated sample at temperature 100°C. In addition, we found that the thermal oxidation reduces the ability of copper nanoparticles to inhibit bacteria.

Conclusions:The results we obtained are summarized in the following points: 1) Thermal oxidation reduces the reflectivity of copper samples. 2) The plasma edge increases with the increase in the oxidation temperature. 3) Increasing the oxidation temperature leads to a decrease in bacterial inhibition rates

About the authors

Kamal Kayed

Department of Physics, Faculty of Science, Damascus University

Author for correspondence.
Email: info@benthamscience.net

Ghaytha Mansour

Department of Botany, Faculty of Science,, Damascus University

Email: info@benthamscience.net

Esaaf Alsoki

College of Engineering and Technology,, American University of The Middle East

Email: info@benthamscience.net

References

  1. El-Naggar ME, Hasanin M, Hashem AH. Eco, friendly synthesis of superhydrophobic antimicrobial film based on cellulose acetate/polycaprolactone loaded with the green biosynthesized copper nanoparticles for food packaging application. J Polym Environ 2021. doi: 10.1007/s10924-021-02318-9
  2. Hassabo AG, El-Naggar ME, Mohamed AL, Hebeish AA, Hebeish AA. Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr Polym 2019; 210: 144-56. doi: 10.1016/j.carbpol.2019.01.066 PMID: 30732747
  3. Hebeish A, El-Naggar ME, Tawfik S, Zaghloul S, Sharaf S. Hyperbranched polymer–silver nanohybrid induce super antibacterial activity and high performance to cotton fabric. Cellulose 2019; 26(5): 3543-55. doi: 10.1007/s10570-019-02319-x
  4. Moustafa MG, Nader R. Abdelsalam Me, et al. Impact of high throughput green synthesized silver nanoparticles on agronomic traits of onion. Int J Biol Macromol 2020; 149: 1304-17.
  5. Sharaf S, El-Naggar ME. Eco-friendly technology for preparation, characterization and promotion of honey bee propolis extract loaded cellulose acetate nanofibers in medical domains. Cellulose 2018; 25(9): 5195-204. doi: 10.1007/s10570-018-1921-1
  6. Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord Chem Rev 2017; 353: 1-57. doi: 10.1016/j.ccr.2017.10.004
  7. Zhang Q, Zhang K, Xu D, et al. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 2014; 60: 208-337. doi: 10.1016/j.pmatsci.2013.09.003
  8. Gu A, Wang G, Zhang X, Fang B. Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bull Mater Sci 2010; 33(1): 17-20. doi: 10.1007/s12034-010-0002-3
  9. Muench F, Sun L, Kottakkat T, et al. Free-standing networks of core–shell metal and metal oxide nanotubes for glucose sensing. ACS Appl Mater Interfaces 2017; 9(1): 771-81. doi: 10.1021/acsami.6b13979 PMID: 27935294
  10. Zhang K, Suh JM, Lee TH, et al. Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Converg 2019; 6(1): 6. doi: 10.1186/s40580-019-0176-3 PMID: 30788636
  11. Chen J, Wang K, Hartman L, Zhou W. H2S detection by vertically aligned cuo nanowire array sensors. J Phys Chem C 2008; 112(41): 16017-21. doi: 10.1021/jp805919t
  12. Zedan AF, Mohamed AT, El-Shall MS, AlQaradawi SY, AlJaber AS. Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation. RSC Advances 2018; 8(35): 19499-511. doi: 10.1039/C8RA03623C PMID: 35540972
  13. Mashentseva AA, Barsbay M, Zdorovets MV, Zheltov DA, Güven O. Cu/CuO composite track-etched membranes for catalytic decomposition of nitrophenols and removal of As(III). Nanomaterials 2020; 10(8): 1552. doi: 10.3390/nano10081552 PMID: 32784726
  14. Shim G, Kim SH, Eom HW, Young SC. Concentration and R. oughness, dependent antibacterial and antifungal activities of CuO thin films and their Cu ion cytotoxicity and elution behavior. J Ind Microbiol Biotechnol 2015; 42: 735-44. doi: 10.1007/s10295-015-1601-1 PMID: 25708981
  15. Kim Y-H, Choi Y, Kim K-M, Choi S-Y. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties. Appl Surf Sci 2012; 258(8): 3823-8. doi: 10.1016/j.apsusc.2011.12.036
  16. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009; 33(6): 587-90. doi: 10.1016/j.ijantimicag.2008.12.004 PMID: 19195845
  17. Mahltig B, Fiedler D. Bِttcher H. Antimicrobial sol–gel coatings. J Sol-Gel Sci Technol 2004; 32: 219-22. doi: 10.1007/s10971-004-5791-7
  18. Kayed K, Alberni L. The effect of annealing temperature on the plasma edge in reflectance spectra of Al/Al2O3 composites synthesized by thermal oxidation of aluminum thin films. Plasmonics 2020; 15(6): 1959-66. doi: 10.1007/s11468-020-01225-4
  19. Potter KS, Simmons JH. Optical properties of insulators—materials, devices, and applications. In: Kelly SP, Joseph HS, Eds. Optical Materials 2nd Ed: Amsterdam: Elsevier. 173-228.
  20. Tiwari S. Light interactions with semiconductors Semiconductor Physics: Principles, Theory and Nanoscale. Oxford, England: Oxford University Press 2020; pp. 454-92. doi: 10.1093/oso/9780198759867.003.0012
  21. Kayed K, Mansour G. The antimicrobial activity of silver nanoparticles in Ag/Ag2O composites synthesized by oxygen plasma treatment of silver thin films. Curr Appl Sci Technol 2022; 22(2)
  22. Hawser SP, Bouchillon SK, Hoban DJ, Dowzicky M, Babinchak T. Rising incidence of Staphylococcus aureus with reduced susceptibility to vancomycin and susceptibility to antibiotics: a global analysis 2004–2009. Int J Antimicrob Agents 2011; 37(3): 219-24. doi: 10.1016/j.ijantimicag.2010.10.029 PMID: 21239146
  23. Rebelo R, Manninen NK, Fialho L, Henriques M, Carvalho S. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films. Appl Surf Sci 2016; 371: 1-8. doi: 10.1016/j.apsusc.2016.02.148
  24. Kayed K. The optical properties of individual silver nanoparticles in Ag/Ag2O composites synthesized by oxygen plasma treatment of silver thin films. Plasmonics 2020; 15(5): 1439-49. doi: 10.1007/s11468-020-01169-9
  25. Kayed K. The luminescence properties of individual silver nanoparticles in Ag/Ag2O composites synthesized by oxygen plasma treatment of silver thin films. J Lumin 2021; 237: 118163. doi: 10.1016/j.jlumin.2021.118163

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers