Essential Oils as Alternative Antimicrobials: Current Status


Cite item

Full Text

Abstract

It is becoming increasingly difficult to treat bacterial infections with conventional antibiotics as resistance increases with time. Common antibiotics have been irrationally used in the general community, which has resulted in the selection of antibiotic-resistant genes. Despite various modifications that have been done to restore the antimicrobial activities of conventional antibiotics against an array of multi-drug resistant (MDR) strains, it has been unattainable to overcome this hurdle for a long time. Parallelly, the search for a new and alternative drug has become a high priority in every part of the world.

:In the last two decades, immense interest has grown in natural products as alternative therapeutics due to their lower toxicity, chemical group diversity and biochemical specificity, which are the upper hand compared to antibiotics. Essential oils are naturally found phytochemicals obtained from approximately 60 families of plants. These are composed of 20 to 60 different bioactive components at different concentrations and have already been reported for their antibacterial, antifungal, antiviral, anti-parasitic, insecticidal activities, antioxidant and antiseptic properties. This review focuses on antimicrobial activities, detailed mode of action and the latest progress in the research on the essential oil.

About the authors

Ashish Sahu

Institute of Biotechnology, Amity University

Email: info@benthamscience.net

Debaprasad Parai

Department of Microbiology,, ICMR-Regional Medical Research Centre

Author for correspondence.
Email: info@benthamscience.net

Hari Choudhary

Department of Microbiology,, ICMR-Regional Medical Research Centre

Email: info@benthamscience.net

Desh Singh

Institute of Biotechnology, Amity University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Aminov RI. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front Microbiol 2010; 1: 134. doi: 10.3389/fmicb.2010.00134 PMID: 21687759
  2. Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis 2013; 56(10): 1445-50. doi: 10.1093/cid/cit070 PMID: 23403172
  3. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov 2013; 12(5): 371-87. doi: 10.1038/nrd3975 PMID: 23629505
  4. Nucleo E, Steffanoni L, Fugazza G, et al. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol 2009; 9(1): 270. doi: 10.1186/1471-2180-9-270 PMID: 20028528
  5. Parai D, Banerjee M, Dey P, Chakraborty A, Islam E, Mukherjee SK. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling 2018; 34(3): 320-34. doi: 10.1080/08927014.2018.1437910 PMID: 29482361
  6. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC 2019.
  7. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33. doi: 10.1128/MMBR.00016-10 PMID: 20805405
  8. Antimicrobial resistance: global report on surveillance 2014. Geneva, Switzerland: WHO Press, World Health Organization 2014.
  9. Touani FK, Seukep AJ, Djeussi DE, Fankam AG, Noumedem JAK, Kuete V. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement Altern Med 2014; 14(1): 258. doi: 10.1186/1472-6882-14-258 PMID: 25047005
  10. Wright GD. Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 2014; 60(3): 147-54. doi: 10.1139/cjm-2014-0063 PMID: 24588388
  11. Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 2012; 29(9): 1007-21. doi: 10.1039/c2np20035j PMID: 22786554
  12. Petrovska B. Historical review of medicinal plants' usage. Pharmacogn Rev 2012; 6(11): 1-5. doi: 10.4103/0973-7847.95849 PMID: 22654398
  13. Borchardt JK. The beginnings of drug therapy: Ancient mesopotamian medicine. Drug News Perspect 2002; 15(3): 187-92. doi: 10.1358/dnp.2002.15.3.840015 PMID: 12677263
  14. Chen X, Zhou H, Liu YB, et al. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br J Pharmacol 2006; 149(8): 1092-103. doi: 10.1038/sj.bjp.0706945 PMID: 17088869
  15. Dev S. Ancient-modern concordance in Ayurvedic plants: some examples. Environ Health Perspect 1999; 107(10): 783-9. doi: 10.1289/ehp.99107783 PMID: 10504143
  16. Gibbons S. Anti-staphylococcal plant natural products. Nat Prod Rep 2004; 21(2): 263-77. doi: 10.1039/b212695h PMID: 15042149
  17. Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crops Prod 2014; 62: 250-64. doi: 10.1016/j.indcrop.2014.05.055
  18. Helander IM, Alakomi HL, Latva-Kala K, et al. Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 1998; 46(9): 3590-5. doi: 10.1021/jf980154m
  19. Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 2004; 94(3): 223-53. doi: 10.1016/j.ijfoodmicro.2004.03.022 PMID: 15246235
  20. Nerio LS, Olivero-Verbel J, Stashenko E. Repellent activity of essential oils: A review. Bioresour Technol 2010; 101(1): 372-8. doi: 10.1016/j.biortech.2009.07.048 PMID: 19729299
  21. Tongnuanchan P, Benjakul S. Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 2014; 79(7): R1231-49. doi: 10.1111/1750-3841.12492 PMID: 24888440
  22. Murbach Teles Andrade BF, Nunes Barbosa L, da Silva Probst I, Fernandes Júnior A. Antimicrobial activity of essential oils. J Essent Oil Res 2014; 26(1): 34-40. doi: 10.1080/10412905.2013.860409
  23. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol 2008; 46(2): 446-75. doi: 10.1016/j.fct.2007.09.106 PMID: 17996351
  24. Shaaban HAE, El-Ghorab AH, Shibamoto T. Bioactivity of essential oils and their volatile aroma components: Review. J Essent Oil Res 2012; 24(2): 203-12. doi: 10.1080/10412905.2012.659528
  25. Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines 2017; 4(3): 58. doi: 10.3390/medicines4030058 PMID: 28930272
  26. El-Ghorab A, Shaaban HA, El-Massry KF, Shibamoto T. Chemical composition of volatile extract and biological activities of volatile and less-volatile extracts of juniper berry (Juniperus drupacea L.) fruit. J Agric Food Chem 2008; 56(13): 5021-5. doi: 10.1021/jf8001747 PMID: 18547046
  27. Betts TJ. Chemical characterisation of the different types of volatile oil constituents by various solute retention ratios with the use of conventional and novel commercial gas chromatographic stationary phases. J Chromatogr A 2001; 936(1-2): 33-46. doi: 10.1016/S0021-9673(01)01284-5 PMID: 11761004
  28. Baser KHC, Buchbauer G. Handbook of essential oils: science, technology, and applications. Boca Raton, FL: CRC Press 2009. doi: 10.1201/9781420063165
  29. Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 2009; 70(15-16): 1739-45. doi: 10.1016/j.phytochem.2009.08.023 PMID: 19819506
  30. Saad NY, Muller CD, Lobstein A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragrance J 2013; 28(5): 269-79. doi: 10.1002/ffj.3165
  31. Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 2012; 3: 12. doi: 10.3389/fmicb.2012.00012 PMID: 22291693
  32. Zhang Y, Liu X, Wang Y, Jiang P, Quek S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016; 59: 282-9. doi: 10.1016/j.foodcont.2015.05.032
  33. El Kolli M, Laouer H, El Kolli H, Akkal S, Sahli F. Chemical analysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action. Asian Pac J Trop Biomed 2016; 6(1): 8-15. doi: 10.1016/j.apjtb.2015.08.004
  34. Diao WR, Hu Q-P, Zhang H, Xu JG. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014; 35(1): 109-16. doi: 10.1016/j.foodcont.2013.06.056
  35. Yang XN, Khan I, Kang SC. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pac J Trop Med 2015; 8(9): 694-700. doi: 10.1016/j.apjtm.2015.07.031 PMID: 26433652
  36. Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 2009; 20(12): 1073-9. doi: 10.1016/j.foodcont.2009.02.001
  37. Burt SA, van der Zee R, Koets AP, De Graaff AM. Carvacrol induces heat shock protein 60 and inhibit synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol 2007; 73: 4484-90. doi: 10.1128/AEM.00340-07 PMID: 17526792
  38. Becerril R, Gómez-Lus R, Goñi P, López P, Nerín C. Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Anal Bioanal Chem 2007; 388(5-6): 1003-11. doi: 10.1007/s00216-007-1332-x PMID: 17551716
  39. Ahmad A, Khan A, Kumar P, Bhatt RP, Manzoor N. Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast 2011; 28(8): 611-7. doi: 10.1002/yea.1890 PMID: 21755533
  40. Hu Y, Zhang J, Kong W, Zhao G, Yang M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem 2017; 220: 1-8. doi: 10.1016/j.foodchem.2016.09.179 PMID: 27855875
  41. Zhang J, Ye KP, Zhang X, Pan DD, Sun YY, Cao JX. Antibacterial activity and mechanism of action of black pepper essential oil on meat-borne Escherichia coli. Front Microbiol 2017; 7: 2094. doi: 10.3389/fmicb.2016.02094 PMID: 28101081
  42. Trombetta D, Castelli F, Sarpietro MG, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005; 49(6): 2474-8. doi: 10.1128/AAC.49.6.2474-2478.2005 PMID: 15917549
  43. Rao A, Zhang Y, Muend S, Rao R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 2010; 54(12): 5062-9. doi: 10.1128/AAC.01050-10 PMID: 20921304
  44. Pérez-Fons L, Aranda FJ, Guillén J, Villalaín J, Micol V. Rosemary (Rosmarinus officinalis) diterpenes affect lipid polymorphism and fluidity in phospholipid membranes. Arch Biochem Biophys 2006; 453(2): 224-36. doi: 10.1016/j.abb.2006.07.004 PMID: 16949545
  45. Niu C, Afre S, Gilbert ES. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 2006; 43(5): 489-94. doi: 10.1111/j.1472-765X.2006.02001.x PMID: 17032221
  46. Khan MSA, Zahin M, Hasan S, Husain FM, Ahmad I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett Appl Microbiol 2009; 49(3): 354-60. doi: 10.1111/j.1472-765X.2009.02666.x PMID: 19627477
  47. Poli JP, Guinoiseau E, de Rocca Serra D, et al. Anti-Quorum sensing activity of 12 essential oils on chromobacterium violaceum and specific action of cis-cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis. Molecules 2018; 23(9): 2125. doi: 10.3390/molecules23092125 PMID: 30142938
  48. Yang SK, Yusoff K, Ajat M, et al. Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS One 2019; 14(4): e0214326. doi: 10.1371/journal.pone.0214326 PMID: 30939149
  49. Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 2002; 68(4): 1561-8. doi: 10.1128/AEM.68.4.1561-1568.2002 PMID: 11916669
  50. La Storia A, Ercolini D, Marinello F, Di Pasqua R, Villani F, Mauriello G. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res Microbiol 2011; 162(2): 164-72. doi: 10.1016/j.resmic.2010.11.006 PMID: 21168481
  51. Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016; 2016: 1-21. doi: 10.1155/2016/3012462 PMID: 28090211
  52. Maida I, Lo Nostro A, Pesavento G, et al. Exploring the anti-Burkholderia cepacia complex activity of essential oils: A preliminary analysis. Evidence-Based Complement Alternet Med 2014; 2014: 573518.
  53. Rouis-Soussi LS, Ayeb-Zakhama AE, Mahjoub A, Flamini G, Jannet HB, Harzallah-Skhiri F. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. EXCLI J 2014; 13: 526-35. PMID: 26417280
  54. Lopez-Romero JC, González-Ríos H, Borges A, Simões M. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid Based Complement Alternat Med 2015; 2015: 1-9. doi: 10.1155/2015/795435 PMID: 26221178
  55. Man A, Santacroce L, Iacob R, Mare A, Man L. Antimicrobial activity of six essential oils against a group of human pathogens: a comparative study. Pathogens 2019; 8(1): 15. doi: 10.3390/pathogens8010015 PMID: 30696051
  56. Bey-Ould Si Said Z, Haddadi-Guemghar H, Boulekbache-Makhlouf L, et al. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind Crops Prod 2016; 89: 167-75. doi: 10.1016/j.indcrop.2016.05.018
  57. Martucci JF, Gende LB, Neira LM, Ruseckaite RA. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind Crops Prod 2015; 71: 205-13. doi: 10.1016/j.indcrop.2015.03.079
  58. Radaelli M, da Silva BP, Weidlich L, et al. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens. Braz J Microbiol 2016; 47(2): 424-30. doi: 10.1016/j.bjm.2015.10.001 PMID: 26991289
  59. Sharifi-Rad J, Mnayer D, Tabanelli G, et al. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell Mol Biol 2016; 62(9): 57-68. PMID: 27585263
  60. Aguiar RWS, Ootani MA, Ascencio SD, Ferreira TPS, Santos MM, Santos GR. Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. Sci World JentificWorldJournal 2014; 2014: 1-8. doi: 10.1155/2014/492138 PMID: 24600325
  61. Ghavam M, Manca ML, Manconi M, Bacchetta G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci Rep 2020; 10(1): 15647. doi: 10.1038/s41598-020-73193-y PMID: 32973295
  62. Abers M, Schroeder S, Goelz L, et al. Antimicrobial activity of the volatile substances from essential oils. BMC Complement Med Ther 2021; 21(1): 124. doi: 10.1186/s12906-021-03285-3 PMID: 33865375
  63. Cazella LN, Glamoclija J, Soković M, et al. Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front Plant Sci 2019; 10: 27. doi: 10.3389/fpls.2019.00027 PMID: 30761171
  64. Mekonnen A, Yitayew B, Tesema A, Taddese S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. Int J Microbiol 2016; 2016: 9545693.
  65. Nazzaro F, Fratianni F, Coppola R, Feo VD. Essential oils and antifungal activity. Pharmaceuticals (Basel) 2017; 10(4): 86. doi: 10.3390/ph10040086 PMID: 29099084
  66. Cui H, Zhang X, Zhou H, Zhao C, Lin L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot Stud (Taipei, Taiwan) 2015; 56(1): 16. doi: 10.1186/s40529-015-0096-4 PMID: 28510825
  67. Lakehal S, Meliani A, Benmimoune S, Bensouna SN, Benrebiha FZ, Chaouia C. Essential oil composition and antimicrobial activity of Artemisia herba-alba Asso grown in Algeria. Med Chem 2016; 6: 435-9.
  68. Li ZH, Cai M, Liu YS, Sun PL, Luo SL. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 2019; 24(8): 1577. doi: 10.3390/molecules24081577 PMID: 31013583
  69. Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, et al. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food Chem Toxicol 2015; 81: 9-27. doi: 10.1016/j.fct.2015.03.030 PMID: 25865936
  70. Nikolić M, Jovanović KK, Marković T, et al. Chemicalcomposition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils Ind Crops Prod 2014; 61: 225-32. doi: 10.1016/j.indcrop.2014.07.011
  71. Kerekes EB, Vidács A, Takó M, et al. Anti-biofilm effect of selected essential oils and main components on mono and polymicrobic bacterial cultures. Microorganisms 2019; 7(9): 345. doi: 10.3390/microorganisms7090345 PMID: 31547282
  72. Purkait S, Bhattacharya A, Bag A, Chattopadhyay RR. Evaluation of antibiofilm efficacy of essential oil components β-caryophyllene, cinnamaldehyde and eugenol alone and in combination against biofilm formation and preformed biofilms of Listeria monocytogenes and Salmonella typhimurium. Lett Appl Microbiol 2020; 71(2): 195-202. doi: 10.1111/lam.13308 PMID: 32357268
  73. Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind Crops Prod 2015; 71: 197-204. doi: 10.1016/j.indcrop.2015.03.058
  74. Garzoli S, Božović M, Baldisserotto A, et al. Essential oil extraction, chemical analysis and anti Candida activity of Foeniculum vulgare Miller-new approaches. Nat Prod Res 2018; 32(11): 1254-9. doi: 10.1080/14786419.2017.1340291 PMID: 28617136
  75. Zrira S, Ghanmi M. Chemical composition and antibacterial activity of the essential of Cedrus atlantica (Cedarwood oil). J Essent Oil-Bear Plants 2016; 19(5): 1267-72. doi: 10.1080/0972060X.2015.1137499
  76. Garcia R, Alves ESS, Santos MP, et al. Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Braz J Microbiol 2008; 39(1): 163-8. doi: 10.1590/S1517-83822008000100032 PMID: 24031197
  77. Kačániová M, Terentjeva M, Vukovic N, et al. The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish Saudi Pharm J 2017; 25(8): 1108-6. doi: 10.1016/j.jsps.2017.07.005 PMID: 30166897
  78. Rasooli I, Rezaei MB, Allameh A. Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int J Infect Dis 2006; 10(3): 236-41. doi: 10.1016/j.ijid.2005.05.006 PMID: 16412677
  79. Braga PC, Alfieri M, Culici M, Dal Sasso M. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses 2007; 50(6): 502-6. doi: 10.1111/j.1439-0507.2007.01412.x PMID: 17944714
  80. Perry CC, Weatherly M, Beale T, Randriamahefa A. Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escherichia coli and Staphylococcus aureus. J Sci Food Agric 2009; 89(6): 958-64. doi: 10.1002/jsfa.3538
  81. Rammanee K, Hongpattarakere T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol 2011; 4(6): 1050-9. doi: 10.1007/s11947-010-0507-1
  82. Bajer T, Šilha D, Ventura K, Bajerová P. Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind Crops Prod 2017; 100: 95-105. doi: 10.1016/j.indcrop.2017.02.016
  83. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002; 56(1): 187-209. doi: 10.1146/annurev.micro.56.012302.160705 PMID: 12142477
  84. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14(9): 563-75. doi: 10.1038/nrmicro.2016.94 PMID: 27510863
  85. Cáceres M, Hidalgo W, Stashenko E, Torres R, Ortiz C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics 2020; 9(4): 147. doi: 10.3390/antibiotics9040147 PMID: 32235590
  86. Chmit M, Kanaan H, Habib J, Abbass M, Mcheik A, Chokr A. Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pac J Trop Med 2014; 7: S546-52. doi: 10.1016/S1995-7645(14)60288-1 PMID: 25312182
  87. Budzyńska A, Więckowska-Szakiel M, Sadowska B, Kalemba D, Różalska B. Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol 2011; 60(1): 35-41. doi: 10.33073/pjm-2011-005 PMID: 21630572
  88. Camporese A. In vitro activity of Eucalyptus smithii and Juniperus communis essential oils against bacterial biofilms and efficacy perspectives of complementary inhalation therapy in chronic and recurrent upper respiratory tract infections. Infez Med 2013; 21(2): 117-24. PMID: 23774975
  89. Tang C, Chen J, Zhang L, et al. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. Int J Med Microbiol 2020; 310(5): 151435. doi: 10.1016/j.ijmm.2020.151435 PMID: 32654773
  90. Schillaci D, Arizza V, Dayton T, Camarda L, Stefano VD. In vitro anti-biofilm activity of Boswellia spp. oleogum resin essential oils. Lett Appl Microbiol 2008; 47(5): 433-8. doi: 10.1111/j.1472-765X.2008.02469.x PMID: 19146534
  91. Čabarkapa I, Čolović R, Đuragić O, et al. Antibiofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 2019; 35(3): 361-75. doi: 10.1080/08927014.2019.1610169 PMID: 31088182
  92. Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 2014; 9(4): e93414. doi: 10.1371/journal.pone.0093414 PMID: 24691035
  93. Manoharan RK, Lee JH, Lee J. Antibiofilm and antihyphal activities of cedar leaf essential oil, camphor, and fenchone derivatives against Candida albicans. Front Microbiol 2017; 8: 1476. doi: 10.3389/fmicb.2017.01476 PMID: 28824600
  94. Kumari P, Mishra R, Arora N, et al. Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Front Microbiol 2017; 8: 2161. doi: 10.3389/fmicb.2017.02161 PMID: 29163441
  95. Kim YG, Lee JH, Gwon G, Kim SI, Park JG, Lee J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci Rep 2016; 6(1): 36377. doi: 10.1038/srep36377 PMID: 27808174
  96. Melo RS, Albuquerque AÁM, Gomes PAM, et al. Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019; 24(21): 3864. doi: 10.3390/molecules24213864 PMID: 31717766
  97. Haeseler G, Maue D, Grosskreutz J, et al. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur J Anaesthesiol 2002; 19(8): 571-9. doi: 10.1017/S0265021502000923 PMID: 12200946
  98. Horky P, Skalickova S, Smerkova K, Skladanka J. Essential oils as a feed additives: pharmacokinetics and potential toxicity in monogastric animals. Animals 2019; 9(6): 352. doi: 10.3390/ani9060352 PMID: 31200591
  99. Agus HH. Chapter 4 -Terpene toxicity and oxidative stress. In: Toxicology-Oxidative Stress and Dietary Antioxidants. Cambridge, Massachusetts: Academic Press 2021; pp. 33-42.
  100. Hollenbach CB, Bing RS, Stedile R, et al. Reproductive toxicity assessment of Origanum vulgare essential oil on male Wistar rats. Acta Sci Vet 2015; 43: 1295.
  101. Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zin SR, Alshawsh MA. Prenatal developmental toxicity evaluation of Verbena officinalis during gestation period in female Sprague-Dawley rats. Chem Biol Interact 2019; 304: 28-42. doi: 10.1016/j.cbi.2019.02.016 PMID: 30807743
  102. Al-Azem DA, Al-Derawi KH, Al-Saadi SAAM. The protective effects of Syzygium aromaticum essential oil extract against methotrexate induced hepatic and renal toxicity in rats. J Pure Appl Microbiol 2019; 13(1): 505-15. doi: 10.22207/JPAM.13.1.57
  103. Daneshbakhsh D, Asgarpanah J, Najafizadeh P, Rastegar T, Mousavi Z. Safety assessment of Mentha mozaffarianii essential oil: Acute and repeated toxicity studies. Iran J Med Sci 2018; 43(5): 479-86. PMID: 30214100
  104. Fallahi S, Beyranvand M, Mahmoudvand H, Nayebzadeh H, Kheirandish F, Jahanbakhsh S. Chemical composition, acute and sub-acute toxicity of Satureja khuzestanica essential oil in mice. Marmara Pharm J 2017; 21(3): 515-21. doi: 10.12991/marupj.318614
  105. Chaieb K, Zmantar T, Ksouri R, et al. Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 2007; 50(5): 403-6. doi: 10.1111/j.1439-0507.2007.01391.x PMID: 17714361
  106. Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog 2018; 120: 198-203. doi: 10.1016/j.micpath.2018.04.036 PMID: 29702210
  107. Kwiatkowski P, Łopusiewicz Ł, Kostek M, et al. The antibacterial activity of lavender essential oil alone and in combination with octenidine dihydrochloride against MRSA strains. Molecules 2019; 25(1): 95. doi: 10.3390/molecules25010095 PMID: 31888005
  108. Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 2006; 19(1): 50-62. doi: 10.1128/CMR.19.1.50-62.2006 PMID: 16418522
  109. Ben Hsouna A, Ben Halima N, Smaoui S, Hamdi N. Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis 2017; 16(1): 146. doi: 10.1186/s12944-017-0487-5 PMID: 28774297
  110. Ilić ZS, Milenković L, Šunić L, et al. Efficiency of basil essential oil antimicrobial agents under different shading treatments and harvest times. Agronomy 2021; 11(8): 1574. doi: 10.3390/agronomy11081574
  111. Macedo LM, Santos ÉM, Ataide JA, et al. Development and evaluation of an antimicrobial formulation containing Rosmarinus officinalis. Molecules 2022; 27(16): 5049. doi: 10.3390/molecules27165049 PMID: 36014289
  112. Sadlon AE, Lamson DW. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern Med Rev 2010; 15(1): 33-47. PMID: 20359267
  113. Kligler B, Chaudhary S. Peppermint oil. Am Fam Physician 2007; 75(7): 1027-30. PMID: 17427617

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers