Eco-friendly Biosynthesis of Ag-NPs by Streptomyces griseus with Anti-Candida albicans and Antitumor Activity


Cite item

Full Text

Abstract

Background:The most significant sexually transmissible fungal disease, semen candidiasis, is caused by Candida albicans and impacts male reproductive potential. Actinomycetes are a group of microorganisms that could be isolated from various habitats and used for the biosynthesis of various nanoparticles with biomedical applications.

Objective:Testing antifungal activity of biosynthesized Ag nanoparticles versus isolated C. albicans from semen as well as its anticancer activity versus the Caco-2 cell line.

Methods:Screening 17 isolated actinomycetes for the biosynthesis of Ag nanoparticle biosynthesis. Characterization of biosynthesized nanoparticles, testing its anti-Candida albicans, and antitumor activity.

Results:Streptomyces griseus was the isolate that identified silver nanoparticles using UV, FTIR, XRD and TEM. Biosynthesized nanoparticles have promising anti-Candida albicans with MIC (125 ± 0.8) µg/ml and accelerate apoptotic rate versus Caco-2 cells (IC50 = 7.30 ± 0.54 µg/ml) with minimal toxicity (CC50 = 142.74 ± 4.71 µg/ml) versus Vero cells.

Conclusion:Certain actinomycetes could be used for the biosynthesis of nanoparticles with successive antifungal and anticancer activity to be verified by in vivo studies.

About the authors

Inas Abou El-Enain

Botany and Microbiology Department, Faculty of Science, Al Azhar University

Email: info@benthamscience.net

Nermine Abed

Botany and Microbiology Department, Faculty of Science, Al Azhar University

Email: info@benthamscience.net

Eman Helal

Department of Microbiology International Islamic Center for Population Studies and Research,, Al-Azhar University

Email: info@benthamscience.net

Eman Abdelkhalek

Botany and Microbiology Department, Faculty of Science, Al Azhar University

Email: info@benthamscience.net

Waleed Suleiman

Department of Microbiology, Faculty of Science,, Al Azhar University

Email: info@benthamscience.net

Nesreen Safwat

The Regional Center for Mycology and Biotechnology, Al-Azhar University

Email: info@benthamscience.net

Mohammed Yosri

The Regional Center for Mycology and Biotechnology,, Al Azhar University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Makhoba X, Pouris A. Bibliometric analysis of the development of nanoscience research in South Africa. S Afr J Sci 2017; 113(11/12): 9. doi: 10.17159/sajs.2017/20160381
  2. Kargozar S, Mozafari M. Nanotechnology and Nanomedicine: Start small, think big. Mater Today Proc 2018; 5(7): 15492-500. doi: 10.1016/j.matpr.2018.04.155
  3. Ferreira AJ, Cemlyn-Jones J, Robalo CC. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev Port Pneumol 2013; 19(1): 28-37. doi: 10.1016/j.rppneu.2012.09.003 PMID: 23265236
  4. Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present status and future prospects of jute in nanotechnology: A review. Chem Rec 2021; 21(7): 1631-65. doi: 10.1002/tcr.202100135 PMID: 34132038
  5. Sahu SC, Hayes AW. Toxicity of nanomaterials found in human environment. Toxicology Research and Application 2017; p. 1. doi: 10.1177/2397847317726352
  6. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008; 10(5): 845-62. doi: 10.1007/s11051-008-9357-4
  7. Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev 2015; 44(16): 5778-92. doi: 10.1039/C4CS00363B PMID: 25615873
  8. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl microbiol biotechnol 2014; 98(19): 8083-97. doi: 10.1007/s00253-014-5953-7 PMID: 25158833
  9. Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial Nano-Factories: Synthesis and biomedical applications. Front Chem 2021; 9: 626834. doi: 10.3389/fchem.2021.626834 PMID: 33937188
  10. Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ. Andronescu E. Inorganic nanoparticles and composite Films for antimicrobial therapies B. Int J Mol Sci 2021; 22(9): 4595. doi: 10.3390/ijms22094595 PMID: 33925617
  11. Gudikandula K, Charya Maringanti S. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci 2016; 11(9): 714-21. doi: 10.1080/17458080.2016.1139196
  12. Karade VC, Patil RB, Parit SB, Kim JH, Chougale AD, Dawkar VV. Insights into shape-based silver nanoparticles: A weapon to cope with pathogenic attacks. ACS Sustain Chem& Eng 2021; 9(37): 12476-507. doi: 10.1021/acssuschemeng.1c03797
  13. Ivanov M, Kannan A, Stojković DS, et al. Camphor and eucalyptol-anticandidal spectrum, antivirulence effect, efflux pumps interference and cytotoxicity. Int J Mol Sci 2021; 22(2): 483. doi: 10.3390/ijms22020483 PMID: 33418931
  14. Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea-Simon IA, Man A. Candida and candidiasis-opportunism versus pathogenicity: A Review of the Virulence Traits. Microorganisms 2020; 8(6): 857. doi: 10.3390/microorganisms8060857 PMID: 32517179
  15. Mba IE, Nweze EI. Mechanism of candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 2020; 39(10): 1797-819. doi: 10.1007/s10096-020-03912-w PMID: 32372128
  16. Castrillón-Duque EX, Puerta SJ, Cardona Maya WD. yeast and fertility: Effects of in vitro activity of candida spp. On sperm quality. J Reprod Infertil 2018; 19(1): 49-55. PMID: 29850447
  17. Kumari S, Tehri N, Gahlaut A, Hooda V. Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. Inorganic and Nano-Metal Chemistry 2020; pp. 1-10. doi: 10.1080/24701556.2020.1835978
  18. Soliman AM, Abdel-Latif W, Shehata IH, Fouda A, Abdo AM, Ahmed YM. Green approach to overcome the resistance pattern of Candida spp. using biosynthesized silver nanoparticles fabricated by Penicillium chrysogenum F9. Biol Trace Elem Res 2021; 199(2): 800-11. doi: 10.1007/s12011-020-02188-7 PMID: 32451695
  19. Yang H, Zhang J, Xue Z, et al. Potential pathogenic bacteria in seminal microbiota of patients with Different Types of Dysspermatism. Sci Rep 2020; 10(1): 6876. doi: 10.1038/s41598-020-63787-x PMID: 32327694
  20. Menkveld R, Wong WY, Lombard CJ, et al. Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: An effort towards standardization of in vivo thresholds. Hum Reprod 2001; 16(6): 1165-71. doi: 10.1093/humrep/16.6.1165 PMID: 11387287
  21. Gad et al A, Suleiman WB, Beltagy EA, El-Sheikh H, Ibrahim HA. Characterization and screening of marine-derived fungi along the coastline of Alexandria, Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Biology and Fisheries 2021; 25(5): 215-39. doi: 10.21608/ejabf.2021.198560
  22. Tarini NMA, Wahid MH, Ibrahim F, Yasmon A. Djauzi, S. Development of multiplex-PCR assay for rapid detection of Candida spp. Med J Indones 2020; 19(2): 83-7.
  23. Gad AM, Suleiman WB, El-Sheikh HH, Elmezayen HA, Beltagy EA. Characterization of cellulase from Geotrichum candidum strain Gad1 approaching bioethanol production. Arab J Sci Eng 2022; 47(6): 6837-50. doi: 10.1007/s13369-021-06391-z
  24. Abdel-Razek AS, El-Sheikh HH, Suleiman WB, Taha TH, Mohamed MK. Bioelimination of phenanthrene using degrading bacteria isolated from petroleum soil: Safe approach. Desalination Water Treat 2020; 181: 131-40. doi: 10.5004/dwt.2020.25109
  25. Suleiman WB, El Bous M, Ibrahim M, El Baz H. In vitro evaluation of Syzygium aromaticum L. ethanol extract as biocontrol agent against postharvest tomato and potato diseases. Egypt J Bot 2019; 59(1): 81-94.
  26. Vieira FCS, Nahas E. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 2005; 160(2): 197-202. doi: 10.1016/j.micres.2005.01.004 PMID: 15881837
  27. Ghanem NB, Sabry SA, El-Sherif ZM, Abu El-Ela GA. Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria. J Gen Appl Microbiol 2000; 46(3): 105-11. doi: 10.2323/jgam.46.105 PMID: 12483583
  28. El-Gamal MS, Salem SS, Abdo AM. Biosynthesis, characterization, and antimicrobial activities of silver nanoparticles synthesized by endophytic Streptomyces sp. J Biotechnol 2018; 56: 69-85.
  29. Sayed R, Safwat NA, Amin BH, Yosri M. Study of the dual biological impacts of aqueous extracts of normal and gamma-irradiated Galleria mellonella larvae. J Taibah Univ Med Sci 2022; 17(5): 765-73. doi: 10.1016/j.jtumed.2021.12.016 PMID: 36050949
  30. Kuster E. Simple Working Key for the Classification and Identification of Named Taxa Included in the International Streptomyces Project1, 2. Int J Syst Evol Microbiol 1972; 22(3): 139-48.
  31. Singh V, Haque S, Singh H, et al. Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Front Microbiol 2016; 7: 1921. doi: 10.3389/fmicb.2016.01921 PMID: 27999566
  32. Augustine N, Peter AW, Kerkar S, Thomas S. Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr Microbiol 2012; 64(4): 338-42. doi: 10.1007/s00284-011-0073-4 PMID: 22231452
  33. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 1970; 20(4): 435-43.
  34. Hashem AH, Abu-Elreesh G, El-Sheikh HH, Suleiman WB. Isolation, identification, and statistical optimization of a psychrotolerant Mucor racemosus for sustainable lipid production. Biomass Convers Biorefin 2023; 13: 3415-26.
  35. Bahri SBS, Wahyudi AT, Mubarik NR. Genetic diversity of plant growth promoting rhizobacteria of Bacillus sp. based on 16S rRNA sequence and amplified rDNA restriction analysis. Microbiol Indones 2009; 3(1): 2-2.
  36. Amer MM, Mekky HM, Fedawy HS. Molecular identification of Mycoplasma synoviae from breeder chicken flock showing arthritis in Egypt. Vet World 2019; 12(4): 535-41. doi: 10.14202/vetworld.2019.535-541 PMID: 31190708
  37. Ali OM, Hasanin MS, Suleiman WB, Helal EEH, Hashem AH. Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: Antimicrobial, antioxidant, and anticancer activities. Biomass Convers Biorefin 2022; 12: 1-12. doi: 10.1007/s13399-022-02772-y
  38. Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. J Drug Deliv Sci Technol 2021; 62: 102401. doi: 10.1016/j.jddst.2021.102401
  39. Yosri M, Elaasser MM, Abdel-Aziz MM, et al. Determination of Therapeutic and Safety Effects of Zygophyllum coccineum Extract in Induced Inflammation in Rats. BioMed Res Int 2022; 2022: 1-17. doi: 10.1155/2022/7513155 PMID: 35898689
  40. Tian YH, Xiong JW, Hu L, Huang DH, Xiong CL. Candida albicans and filtrates interfere with human spermatozoal motility and alter the ultrastructure of spermatozoa: An in vitro study. Int J Androl 2007; 30(5): 421-9. doi: 10.1111/j.1365-2605.2006.00734.x PMID: 17298548
  41. Ibrahim HM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of radiation research and applied sciences 2015; 8(3): 265-75.
  42. Salem SS, EL-Belely EF, Niedbała G, et al. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 2020; 10(10): 2082. doi: 10.3390/nano10102082 PMID: 33096854
  43. Menazea AA, Abdelghany AM. Precipitation of silver nanoparticle within silicate glassy matrix via Nd:YAG laser for biomedical applications. Radiat Phys Chem 2020; 174: 108958. doi: 10.1016/j.radphyschem.2020.108958
  44. Al-Dhabi NA, Ghilan AKM, Esmail GA, Arasu MV, Duraipandiyan V, Ponmurugan K. Environmental friendly synthesis of silver nanomaterials from the promising Streptomyces parvus strain Al-Dhabi-91 recovered from the Saudi Arabian marine regions for antimicrobial and antioxidant properties. J Photochem Photobiol B 2019; 197: 111529. doi: 10.1016/j.jphotobiol.2019.111529 PMID: 31220803
  45. Bhat M, Chakraborty B, Kumar RS, et al. Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. J King Saud Univ Sci 2021; 33(2): 101296. doi: 10.1016/j.jksus.2020.101296
  46. Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One 2014; 9(10): e108876. doi: 10.1371/journal.pone.0108876 PMID: 25290909
  47. Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 2009; 22(2): 235-42. doi: 10.1007/s10534-008-9159-2 PMID: 18769871
  48. Gutiérrez JA, Caballero S, Díaz LA, Guerrero MA, Ruiz J, Ortiz CC. High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater Sci Eng 2018; 4(2): 647-53. doi: 10.1021/acsbiomaterials.7b00511 PMID: 33418753
  49. Sri SM, Mekala M, Suganya K, Nandhini B. Biosynthesis of silver nanoparticles using Streptomyces griseus PDS1 for anticancer activity. IOSR-JPB 2017; 12(6): 11-6.
  50. Baygar T, Ugur A. Biosynthesis of Silver Nanoparticles by Streptomyces griseorubens isolated from Soil and Their Antioxidant Activity. IET Nanobiotechnol 2017; 11(3): 286-91. doi: 10.1049/iet-nbt.2015.0127 PMID: 28476986
  51. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  52. Saravanakumar K, Chelliah R. MubarakAli D, Oh DH, Kathiresan K, Wang MH. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep 2019; 9(1): 5787. doi: 10.1038/s41598-019-42112-1 PMID: 30962456
  53. Barai AC, Paul K, Dey A, et al. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg 2018; 5(1): 10. doi: 10.1186/s40580-018-0142-5 PMID: 29682442
  54. Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. Febs J 2012; 279: 1327-38.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers