Теоретическое исследование адсорбции некоторых азолов на поверхности графена
- Authors: Гриневич О.И.1, Буряк А.К.1
-
Affiliations:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Issue: Vol 98, No 1 (2024)
- Pages: 153-158
- Section: ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ И ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ
- Submitted: 27.02.2025
- Published: 19.07.2024
- URL: https://rjonco.com/0044-4537/article/view/669117
- DOI: https://doi.org/10.31857/S0044453724010193
- EDN: https://elibrary.ru/SEGCMW
- ID: 669117
Cite item
Abstract
Изучена адсорбция 1Н-пиразола, 1Н-имидазола и 1Н-1,2,4-триазола на поверхности однородного графена с помощью теории функционала плотности. Рассчитаны атомные заряды по методу Малликена для индивидуальных азолов, согласно которым электронная структура 1Н-имидазола с выраженным диполем является наиболее благоприятной для адсорбции на поляризуемом графене. Построены кривые потенциалов Леннард-Джонса, из которых найдены значения энтальпий адсорбции азолов. Оценены электронные возмущения, возникающие как изменения электронной плотности в ходе связывания с графеном. Проведено сравнение полученных результатов с литературными данными о характере адсорбции азолов на неполярных сорбентах. Отмечена необходимость учета распределения электронной плотности при объяснении механизма адсорбции на поверхности графена.
Keywords
About the authors
О. И. Гриневич
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Author for correspondence.
Email: oksigrinevich@gmail.com
Russian Federation, Москва
А. К. Буряк
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: oksigrinevich@gmail.com
Russian Federation, Москва
References
- Arora P., Arora V., Lamba H.S. et al. // IJPSR. 2012. V. 3. No 9. P. 2947.
- Östman C.E., Colmsjö A.L. // Fuel. 1988. V. 67. March. P. 396.
- Kurbatova S.V., Kharitonova O.V., Finkel’shtein E.E. // Rus. J. of Phys. Chem. A. 2008. V. 82. No 11. P. 1932–1937. https://doi.org/10.1134/S003602440811023X.
- Попов М.С., Ульяновский Н.В. // Масс-спектрометрия. 2019. Т. 16. № 3. С. 205. https://doi.org/10.25703/MS.2019.16.36.
- Киселев А.В., Полотнюк Е.Б., Щербакова К.Д. // Докл. АН СССР. 1982. Т. 266. С. 892.
- Киселев А.В., Пошкус Д.П., Щербакова К.Д. // Журн. физ. химии. 1986. Т. 60. № 6. С. 1329–1343.
- Bobyleva M.S., Kiselev A.V., Kulikov N.S. et al. // Adsorption Science & Technology. 1985. V. 2. No 3. P. 165. https://doi.org/10.1177/026361748500200303.
- Zhuravleva I.L., Krikunova N.I., Golovnya R.V. // Rus. Chem. Bulletin. 1995. V. 44. No 2. P. 300.
- Golovnya R.V., Kuz’menko T.E., Zhuravleva I.L. // Ibid. 1999. V. 48. No 4. P. 726.
- Zhuravleva I.L., Kuz’menko T.E. // Ibid. 1999. V. 48. No 10. P. 1931.
- Golubović J., Protić A., Zečević M. et al. // Talanta. 2012. V. 100. P. 329–337. https://doi.org/10.1016/j.talanta.2012.07.071.
- Motta M., Rice J.E. // Wiley Interdisciplinary Reviews: Computational Molecular Science. 2022. V. 12. No 3. https://doi.org/10.1002/wcms.1580.
- Tsuneda T. Density Functional Theory in Quantum Chemistry Density Functional Theory in Quantum Chemistry. 1st ed. Tokyo: Springer Tokyo, 2014. https://doi.org/10.1007/978-4-431-54825-6.
- Nakada K., Ishii A. // Solid State Communications. 2011. V. 151. No 1. P. 13. https://doi.org/10.1016/j.ssc.2010.10.036.
- Peng B., Chen L., Que C. et al. // Scientific Reports. 2016. V. 6. No 1. P. 31920. https://doi.org/10.1038/srep31920.
- Tavassoli Larijani H., Darvish Ganji M., Jahanshahi M. // RSC Advances. 2015. V. 5. No 113. P. 92843–92857. https://doi.org/10.1039/C5RA16683G.
- Li B., Ou P., Wei Y. et al. // Materials. 2018. V. 11. No 5. P. 726. https://doi.org/10.3390/ma11050726.
- Qin W., Li X., Bian W.-W. et al. // Biomaterials. 2010. V. 31. No 5. P. 1007–1016. https://doi.org/10.1016/j.biomaterials.2009.10.013.
- Wuest J.D., Rochefort A. // Chemical Communications. 2010. V. 46. No 17. P. 2923. https://doi.org/10.1039/b926286e.
- Voloshina E.N., Mollenhauer D., Chiappisi L. et al. // Chemical Physics Letters. 2011. V. 510. No 4–6. P. 220–223. https://doi.org/10.1016/j.cplett.2011.05.025.
- Grinevich O.I., Volkov V.V., Buryak A.K. // Physical Chemistry Chemical Physics. Royal Society of Chemistry. 2022. V. 24. No 48. P. 29712. https://doi.org/10.1039/d2cp05096j.
- Perdew J.P., Burke K., Ernzerhof M. // Physical Review Letters. 1996. V. 77. No 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
- Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Ibid.2008. V. 100. No 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406.
- Grimme S., Antony J., Ehrlich S. et al. // J. of Chemical Physics. 2010. V. 132. No 15. P. 154104. https://doi.org/10.1063/1.3382344.
- VandeVondele J., Hutter J. // Ibid.2007. V. 127. No 11. P. 114105. https://doi.org/10.1063/1.2770708.
- Goedecker S., Teter M. // Physical Review B — Condensed Matter and Materials Physics. 1996. V. 54. No 3. P. 1703–1710. https://doi.org/10.1103/PhysRevB.54.1703.
Supplementary files
