Express Search and Characterization of Nitro Compounds via Visualization Mass Spectrometry
- Authors: Pytskii I.S.1, Kuznetsova E.S.2, Buryak A.K.1
-
Affiliations:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Issue: Vol 97, No 11 (2023)
- Pages: 1655-1659
- Section: ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ И ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ
- Submitted: 27.02.2025
- Published: 01.11.2023
- URL: https://rjonco.com/0044-4537/article/view/669172
- DOI: https://doi.org/10.31857/S0044453723110262
- EDN: https://elibrary.ru/GMHTHB
- ID: 669172
Cite item
Abstract
The authors describe a way of detecting nitro and amino compounds using a mass spectrometer with laser desorption/ionization. This allows analysis of nitro- and amino compounds from a metal surface without sample preparation at levels of up to 5 ng/cm2 relative to paracetamol. Sensitivity is at the level of modern means of analysis, and the procedure is simple and fast. It is also universal and can be modified to search for other nitro- and amino compounds. Pointwise quantitative analysis can be done using an external standard. The dynamic range is 1.5–2 orders of magnitude. The technique can be used to analyze metal surfaces for nitro-paint residues and traces of explosive compounds.
About the authors
I. S. Pytskii
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: suhorukov1010@mail.ru
119071, Moscow, Russia
E. S. Kuznetsova
Frumkin Institute of Physical Chemistry and Electrochemistry
Email: ivanpic4586@gmail.com
119991, Moscow, Russia
A. K. Buryak
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Author for correspondence.
Email: suhorukov1010@mail.ru
119071, Moscow, Russia
References
- Caulkins J.P., Gould A., Pardo B. et al. // Annu. Rev. Criminol. 2021. V. 4. P. 353–375.
- Galante N., Franceschetti L., Del Sordo S. // Forensic Sci. Med. Pathol. 2021. V. 17. № 3. P. 437–448.
- Lehmann E.L., Arruda M.A.Z. // Anal. Chim. Acta. 2019. V. 1063. P. 9–17.
- Cunha R.L., Oliveira C.D.S.L., de Oliveira A.L. et al. // Microchem. J. 2021. V. 163. P. 105895.
- Suppajariyawat P., Gonzalez-Rodriguez J. // Sci. Justice. 2021. V. 61. № 6. P. 697–703.
- Ryan D.J., Spraggins J.M., Caprioli R.M. et al. // Curr. Opin. Chem. Biol. 2019. V. 48. P. 64–72.
- Morisasa M., Sato T., Kimura K. et al. // Foods. 2019. V. 8. № 12. P. 633.
- Spraggins J.M., Djambazova K.V., Rivera E.S. et al. // Anal. Chem. 2019. V. 91. № 22. P. 14552–14560.
- Lee P.Y., Yeoh Y., Omar N. et al. // Crit. Rev. Clin. Lab. Sci. 2021. V. 58. № 7. P. 513–529.
- Basu S.S., Regan M.S., Randall E.C. et al. // NPJ Precis. Oncol. 2019. V. 3 № 1. P. 17.
- Iartsev S.D., Matyushin D.D., Pytskii I.S. et al. // Surf. Innov. 2018. V. 6. № 4–5. P. 244–249.
- Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2022. V. 96. № 5. P. 1070–1076.
- Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1227–1237.
- Hoong Y.B., Pizzi A., Chuah L.A. Harun J. // Int. J. Adhes. Adhes. 2015. V. 63. P. 117–123.
- Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2319–2324.
- Wang X., Liu Y., Wang Q. et al. // Spectrochim. 2021. V. 244. P. 118876.
- Wang J., Qiu C., Mu X. et al. // Talanta. 2020. V. 210. P. 120631.
Supplementary files
