Production of methanol from СО2 on Cu-Zn-catalysts applied on commercial supports: impact of support and reaction conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Catalytic properties of Cu-Zn-catalysts on various commercial supports such as Al2O3, SiO2, ZrO2(La), TiO2, ZnO, and activated carbon in the reaction of CO2 hydrogenation with methanol production are studied. The CuZn/Al2O3 catalyst is found to show the highest CO2 conversion; the highest selectivities to methanol equaling 99% and 97.5% are observed in CuZn/ZrO2(La) and CuZn/SiO2 catalysts, respectively, and high CH3OH selectivities of 90–95% are achieved in the temperature range of 175-275°C; and the CuZn/ZrO2(La) catalyst had the highest methanol productivity of 547 g/(kgcat h). The synthesized catalysts are characterized by methods of low-temperature nitrogen adsorption, X-ray phase analysis, and SEM-EDX.

全文:

受限制的访问

作者简介

A. Batkin

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kyst@list.ru
俄罗斯联邦, Moscow, 119991

M. Tedeeva

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

俄罗斯联邦, Moscow, 119991

K. Kalmykov

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

俄罗斯联邦, Moscow, 119991

A. Leonov

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

俄罗斯联邦, Moscow, 119991

N. Davshan

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kyst@list.ru
俄罗斯联邦, Moscow, 119991

P. Pribytkov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; M. V. Lomonosov Moscow State University, Department of Chemistry

Email: kyst@list.ru

M. V. Lomonosov Moscow State University, Department of Chemistry

俄罗斯联邦, Moscow, 119991; Moscow, 119991

S. Dunaev

M. V. Lomonosov Moscow State University, Department of Chemistry

Email: kyst@list.ru

Department of Chemistry

俄罗斯联邦, Moscow, 119991

I. Beletskaya

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

俄罗斯联邦, Moscow, 119991

A. Kustov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; M. V. Lomonosov Moscow State University, Department of Chemistry

编辑信件的主要联系方式.
Email: kyst@list.ru

M. V. Lomonosov Moscow State University, Department of Chemistry

俄罗斯联邦, Moscow, 119991; Moscow, 119991

参考

  1. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. P. 2883.
  2. Xin Q., Maximov A.L., Liu B.Y. et al. // Russ. J. Appl. Chem. 2022. V. 95. P. 296.
  3. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. P. 1065.
  4. Matieva Z.M., Kolesnichenko N.V., Snatenkova Yu.M. et al. // J. Taiwan Inst. Chem. Eng. 2023. V. 147. P. 104929.
  5. Vikanova K.V., Kustov A.L., Makhov E.A. et al. // Fuel. 2023. V. 351. P. 128956.
  6. Saito M., Fujitani T., Takeuchi M. et al. // Appl. Catal. A. 1996. V. 138. P. 311.
  7. Kurtz M., Wilmer H., Genger T. et al. // Catal. Lett. 2003. V. 86. P. 77.
  8. Ma J., Sun N., Zhang X. et al. // Catal. Today. 2009. V. 148. P. 221.
  9. Wang W., Wang S., Ma X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3703.
  10. Smirnova E.M., Evdokimenko N.D., Reshetina M.V. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1395.
  11. Jiang Yi., Yang H., Gao P. et al. // J. CО2 Util. 2018. V. 26. P. 642.
  12. Dasireddy V.D.B.C., Likozar B. // Renew. Energ. 2019. V. 140. P. 452.
  13. Meunier N., Chauvy R., Mouhoubi S. et al. // Renew. Energ. 2020. V. 146. P. 1192.
  14. Fang X., Xi Y., Jia H. et al. // J. Ind. Eng. Chem. 2020. V. 88. P. 268.
  15. Atsbha T.A., Yoon T., Seongho P. et al. // J. CO2 Util. 2021. V. 44. P. 101413.
  16. Dement’ev K.I., Dementeva O.S., Ivantsov M.I. et al. // Pet. Chem. 2022. V. 62. P. 445.
  17. Schwiderowski P., Ruland H., Muhler M. // Curr. Opin. Green Sustain. Chem. 2022. V. 38. P. 100688.
  18. Niu J., Liu H., Jin Ya. // Int. J. Hydrog. Energy 2022. V. 47. P. 9183.
  19. Ren M., Zhang Ya., Wang Xu. et al. // Catalysts. 2022. V. 12. P. 403.
  20. Kuznetsov N.Yu., Maximov A.L., Beletskaya I.P. // Russ. J. Org. Chem. 2023. V. 58. P. 1681.
  21. Kropp T., Paier J., Sauer J. // J. Catal. 2017. V. 352. P. 382.
  22. Gribovskii A., Ovchinnikova E., Vernikovskaya N. et al. // Chem. Eng. J. 2017. V. 308. P. 135.
  23. Losch P., Pinar A.B., Willinger M.G. et al. // J. Catal. 2017. V. 345. P. 11.
  24. Wang X., Li R., Bakhtiar S. ul H. et al. // Catal. Commun. 2018. V. 108. P. 64.
  25. Niu X., Gao J., Wang K. et al. // Fuel Process. Technol. 2017. V. 157. P. 99.
  26. Yang L., Liu Z., Liu Z. et al. // Chin. J. Catal. 2017. V. 38 (4). P. 683.
  27. Jiménez-López A., Jiménez-Morales I., Santamaría-González J. et al. // J. Mol. Catal. A. 2011. V. 335. P. 205.
  28. Pirola C., Manenti F., Galli F. et al. // Chem. Eng. Trans. 2014. V. 37. P. 553.
  29. Sun Q., Zhang Yu-L., Chen H.-Y. // J. Catal. 1997. V. 167. P. 92.
  30. Mierczynski P., Maniecki T.P., Chalupka K. et al. // Catal. Today. 2011. V. 176. P. 21.
  31. Ren H., Xu C.-H., Zhao H.-Ya. et al. // J. Ind. Eng. Chem. 2015. V. 28. P. 261.
  32. Bukhtiyarova M., Lunkenbein T., Kähler K. et al. // Catal. Lett. 2017. V. 147. P. 416.
  33. Zhang C., Yang H., Gao P. et al. // J. CО2 Util. 2017. V. 17. P. 263.
  34. Previtali D., Longhi M., Galli F. et al. // Fuel. 2020. V. 274. P. 117804.
  35. Vertepov A.E., Fedorova A.A., Batkin A.M. et al. // Catalysts. 2023. V. 13. P. 1231.
  36. Sloczynski J., Grabowski R., Kozlowska A. et al. // Appl. Catal. A. 2004. V. 278. P. 11.
  37. Bogdan V.I., Kustov L.M. // Mendeleev Commun. 2015. V. 25. P. 446.
  38. Evdokimenko N.D., Kim K.O., Kapustin G.I. et al. // Catal. Ind. 2018. V. 10. P. 288.
  39. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Mendeleev Commun. 2018. V. 28. P. 147.
  40. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2422.
  41. Kim K.O., Shesterkina A.A., Tedeeva M.A. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 582.
  42. Igonina M., Tedeeva M., Kalmykov K. et al. // Catalysts. 2023. V. 13. P. 906.
  43. Tedeeva M.A., Kustov A.L., Pribytkov P.V. et al. // Fuel. 2022. V. 313. P. 122698.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Nitrogen adsorption–desorption isotherms of CuZn/carrier catalysts.

下载 (357KB)
3. Fig. 2. Diffraction patterns of the samples of the Al2O3 support and CuZn/Al2O3 catalyst (a), the SiO2 support and CuZn/SiO2 catalyst (b), the TiO2 support and CuZn/TiO2 catalyst (c), the ZrO2(La) support and CuZn/ZrO2(La) catalyst (d), the C support and CuZn/C catalyst (e), the ZnO support and CuZn/ZnO catalyst (e), as well as data from the JCPDS database for crystalline CuO (JCPDS89–5895) and ZnO (JCPDS33783).

下载 (374KB)
4. Fig. 3. Micrographs of the catalyst samples

下载 (929KB)
5. Fig. 4. Maps of copper and zinc distribution

下载 (964KB)
6. Fig. 5. X-ray microanalysis data of the catalyst surfaces of CuZn/Al2O3 (a), CuZn/SiO2 (b), CuZn/TiO2 (c), CuZn/ZrO2(La) (d), CuZn/C (d) and CuZn/ZnO (e).

下载 (739KB)
7. Fig. 6. Dependences of CO2 conversion (a) and CH3OH selectivity (b) on the reaction temperature at P = 50 atm. for CuZn/carrier samples.

下载 (458KB)
8. Fig. 7. Dependence of selectivity for CH3OH on temperature for CuZn/SiO2 catalyst in the temperature range of 170–270°C at two different pressures of 40 and 50 atm.

下载 (175KB)
9. Fig. 8. Dependences of selectivity for CH4 (a) and CO (b) on reaction temperature at P = 50 atm. for CuZn/carrier samples.

下载 (455KB)
10. Fig. 9. Dependences of CH3OH productivity on reaction temperature at P = 50 atm. for CuZn/carrier samples.

下载 (256KB)

版权所有 © Russian Academy of Sciences, 2025