Determination of Conditions for Selective Sorption of Silver(I) on Thiocarbamoylated Polyethylene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sorption properties of thiocarbamoylated polyethylene with respect to silver(I) from multicomponent solutions have been studied. It was found that the synthesized sorbent is characterized by a high sorption capacity and selectivity with respect to silver ions. In the static sorption mode, quantitative extraction is possible from solutions with a concentration of Ag(I) 1 · 10–4 mol/dm3 in the pH range from 1 to 7, with concomitant Ca(II), Mg(II), Cu(II), Fe(III), Zn(II), Cd(II), Ni(II), Mn(II), Co(II), Pb(II) have no effect on the degree of extraction of silver ions. The high selectivity of sorption is maintained under dynamic conditions in the presence of excessive amounts of base metal ions at pH 2. The total dynamic sorption capacity for silver is 0.35 mmol/g (solution transmission rate 2 cm3/min, pH 2, sorbent weight 0.1 g, C = 1 · 10–4 mol/dm3). The composition of the eluents providing the highest values of the degree of desorption of silver from the surface of the sorbent has been determined. It was found that during sorption using a sorbent after the sorption-desorption stage, its silver capacity decreases slightly.

Full Text

Restricted Access

About the authors

E. A. Melnik

UNIIM – Affiliated Branch of the D. I. Mendeleyev Institute for Metrology; Ural Federal University named after the first President of Russia B.N. Yeltsin (UrFU)

Author for correspondence.
Email: ea-melnik@mail.ru
Russian Federation, Yekaterinburg, 620075; Yekaterinburg, 620002

Y. S. Petrova

UNIIM – Affiliated Branch of the D. I. Mendeleyev Institute for Metrology

Email: ea-melnik@mail.ru
Russian Federation, Yekaterinburg, 620075

L. К. Neudachina

Ural Federal University named after the first President of Russia B.N. Yeltsin (UrFU)

Email: ea-melnik@mail.ru
Russian Federation, Yekaterinburg, 620002

A. V. Pestov

Ural Federal University named after the first President of Russia B.N. Yeltsin (UrFU); I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: ea-melnik@mail.ru
Russian Federation, Yekaterinburg, 620002; Yekaterinburg, 620137

V. A. Osipova

I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: ea-melnik@mail.ru
Russian Federation, Yekaterinburg, 620137

References

  1. Calisi А., Lorusso C., Gallego-Urrea J.A. et al. // Sci. Total Environ. 2022. V. 851. P. 158113. https://doi.org/10.1016/j.scitotenv. 2022. 158113
  2. Sim W., Barnard R.T., Blaskovich M.A.T. et al. // Antibiotics. 2018. V. 7. № 4. P. 93. https://doi.org/10.3390/antibiotics7040093
  3. Borah D., Das N., Sarmah P. et al. // Mater. Today Commun. 2023. V. 34. P. 105110. https://doi.org/10.1016/j.mtcomm.2022.105110
  4. Khatabi H., Bidoki S.M., Haji A. // Mater. Chem. Phys. 2022. V. 290. P. 126548. https://doi.org/10.1016/j.matchemphys.2022.126548
  5. Singh C., Anand S.K., Upadhyay R. et al. // Mater. Chem. Phys. 2023. V. 297. P. 127413. https://doi.org/10.1016/j.matchemphys.2023.127413
  6. Yu S., Yin Y., Liu J. // Environ. Sci.: Processes Impacts. 2013. V. 15. P. 78. https://doi.org/10.1039/C2EM30595J
  7. Morgan T.P., Wood C.M. // Environ Toxicol Chem. 2004. V. 23. № 5. Р. 1261. https://doi.org/10.1897/03-181
  8. Bilberg K., Malte H., Wang T. et al. // Aquat. Toxicol. 2010. V. 96. № 2. P. 159. https://doi.org/10.1016/j.aquatox.2009.10.019
  9. Botelho M.T., Passos M.J.A.R.C., Trevizani T.H. et al. // Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2022. V. 881. P. 503527. https://doi.org/10.1016/j.mrgentox.2022.503527
  10. Andreï J., Guérold F., Bouquerel J. et al. // Aquat. Toxicol. 2023. V. 256. P. 106421. https://doi.org/10.1016/j.aquatox.2023.106421
  11. Xiang Q.Q., Kang Y.H., Lian L.H. et al. // Aquat. Toxicol. 2022. V. 252. P. 106318. https://doi.org/10.1016/j.aquatox.2022.106318
  12. Yeo M.K., Kang M. // Bull. Korean Chem. Soc. 2008. V. 29. № 6. P. 1179. https://doi.org/10.5012/bkcs.2008.29.6.1179
  13. Padhye L.P., Jasemizad T., Bolan S. et al. // Sci. Total Environ. 2023. V. 871. P. 161926. https://doi.org/10.1016/j.scitotenv.2023.161926
  14. Islam M.A., Dada T.K., Parvin M.I. et al. // J. Water Process Engineer. 2022. V. 48. P. 102935. https://doi.org/10.1016/j.jwpe.2022.102935
  15. Петрова Ю.С., Алифханова Л.М.К., Кузнецова К.Я. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 991.
  16. Корнейков Р.И. // Неорган. материалы. 2021. Т. 57. № 4. С. 437.
  17. Алифханова Л.М.К., Петрова Ю.С., Босенко С.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 540.
  18. Çelik Z., Gülfen M., Aydın A.O. // J. Hazard. Mater. 2010. V. 174. № 1–3. P. 556. https://doi.org/10.1016/j.jhazmat.2009.09.087
  19. Maleki H., Durães L., Portugal A. // J. Non-Cryst. Solids. 2014. V. 385. P. 55. https://doi.org/10.1016/j.jnoncrysol.2013.10.017
  20. Ladhe A.R., Frailie P., Hua D. et al. // J. Membr. Sci. 2009. V. 326. № 2. P. 460. https://doi.org/10.1016/j.memsci.2008.10.025
  21. Herman P., Pércsi D., Fodor T. et al. // J. Mol. Liq. 2023. V. 387. P. 122598. https://doi.org/10.1016/j.molliq.2023.122598
  22. Melnyk I.V., Vaclavikova M., Ivanicova L. et al. // Appl. Surface Sci. 2023. V. 609. P. 155253. https://doi.org/10.1016/j.apsusc.2022.155253
  23. Liu P., Wang X., Tian L., et al. // J. Water Process Engineer. 2020. V. 34. P. 101184. https://doi.org/10.1016/j.jwpe.2020.101184
  24. Losev V.N., Elsufiev E.V., Buyko O.V. et al. // Hydrometallurgy. 2018. V. 176. P. 118. https://doi.org/10.1016/j.hydromet.2018.01.016
  25. Thomas H.C. // J. Am. Chem. Soc. 1944. V. 66. № 10. P. 1466.
  26. Родионова А.П., Землякова Е.О., Корякова О.В. и др. // Известия АН. Сер. Химическая. 2019. № 6. С. 1248.
  27. Zhang L., Zhao Y., Mu C. et al. // Sustainable Chem. Pharm. 2020. V. 17. P. 100287. https://doi.org/10.1016/j.scp.2020.100287
  28. Ghanei-Motlagh M., Fayazi M., Taher M.A. et al. // Chem. Eng. J. 2016. V. 290. P. 53. https://doi.org/10.1016/j.cej.2016.01.025
  29. Akhond M., Absalan G., Sheikhian L. et al. // Sep. Purif. Technol. 2006. V. 52. P. 53. https://doi.org/10.1016/j.seppur.2006.03.014
  30. Yang T., Zhanga L., Zhong L. et al. // Hydrometallurgy. 2018. V. 175. P. 179. https://doi.org/10.1016/j.hydromet.2017.11.007
  31. Safarpour M., Safikhani A., Vatanpour V. // Sep. Purif. Technol. 2021. V. 279. P. 119678. https://doi.org/10.1016/j.seppur.2021.119678
  32. Мельник Е.А., Сысолятина А.А., Холмогорова А.С. и др. // Эталоны. Стандартные образцы. 2022. Т. 18(2). С. 57. https://doi.org/10.20915/2077-177-2022-18-2-57-71
  33. Kinnunen V., Perämäki S., Matilainen R. // Spectrochim. Acta. Part B. 2022. V. 193. P. 106431. https://doi.org/10.1016/j.sab.2022.106431

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplement
Download (222KB)
3. Fig. 1. The effect of the acidity of the medium on the sorption of silver ions from a multicomponent system. 1 – C = = 1 × 10-4 mol/l, C = 4 × 10-4 mol/L; 2 – C = = 1 × 10-4 mol/L, C = 1 × 10-4 mol/l; msorbent = = 0.0100 g, d < 0.071 mm.

Download (67KB)
4. Fig. 2. Silver sorption isotherm(I) – and the results of its processing by mathematical models. C = 1 × × 10-4 mol/l; msorbent = 0.0100 g, d < 0.071 mm, pH 2.

Download (215KB)
5. 3. Dynamic output curves of metal ion sorption on thiocarbamoylated polyethylene: msorbent = = 0.1000 g (1), 0.0500 g (2); 0.0100 g (3); C = 1 × 10-4 mol/l; C = 8 × 10-4 mol/l; 0.125 mm > d > 0.100 mm, the transmission rate of the model solution is 2 cm3/min, pH 2.

Download (171KB)
6. Fig. 4. Dependence of the degree of silver extraction(I) on the volume of the passed solution, sorbent = 0.1 g (a), 0.05 g (b). 1 – the first sorption cycle; 2 – the second sorption cycle; 3 – the third sorption cycle. C = 1 × 10-4 mol/l; C = 8 × × 10-4 mol/l; 0.125 mm > d > 0.100 mm, the transmission rate of the model solution is 2 cm3/min, pH 2.

Download (282KB)

Copyright (c) 2024 Russian Academy of Sciences