Quantum‒Chemical Simulation of Molecular Hydrogen Abstraction from Magnesium Borohydride Diammoniate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Within the framework of the cluster approach using the 6‒31G* basis set and the hybrid density functional (B3LYP), we modeled successive abstraction of H2 from the complexes (Mg(BH4)2∙2NH3)2 and (Mg(BH4)2∙2NH3)4. It was found that the initial stage of dehydrogenation needs overcoming energy barriers ~ 1.5‒1.2 eV, which requires preheating, then the process can go on with energy release until about 10 wt % of H2 is extracted, for a higher degree of conversion, additional energy costs exceeding the combustion heat of H2 will be required when extracting more than 12.5 wt % of H2. Therefore, further dehydrogenation of this compound may turn out to be inexpedient from the energy point of view.

Texto integral

Acesso é fechado

Sobre autores

A. Zyubin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432

T. Zyubina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432

O. Kravchenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432

M. Solov’ev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432

V. Vasiliev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432

A. Zaitsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432

A. Shikhovtsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Hydrogen energy center of AFK “Sistema”

Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432; Chernogolovka, 142432

Y. Dobrovol’sky

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Hydrogen energy center of AFK “Sistema”

Email: zyubin@icp.ac.ru
Rússia, Chernogolovka, 142432; Chernogolovka, 142432

Bibliografia

  1. Schlapbach L., Zuttel A. et al. // Nature. 2001. V. 414. P. 353. https://doi.org/10.1038/35104634
  2. ZüttelA. et al. // Mater. Today. 2003. V. 6. P. 24. https://doi.org/10.1016/S1369-7021(03)00922-2
  3. Семененко К.Н., Шилкин С.П., Полякова В.Б. и др. // Изв. АН СССР. Сер. хим. 1975. № 4. С. 735.
  4. Коноплев В.Н., Силина Т.А. и др. // Журн. неорган. химии. 1985. Т. 30. С. 1125.
  5. Кравченко О.В., Кравченко С.Е., Семененко К.Н. и др. // Журн. общ. химии. 1990. Т. 60. С. 2641.
  6. Кравченко О.В., Хафизова Г.М., Бурдина К.П. и др. // Журн. общ. химии.1994. Т. 64. С. 6.
  7. Yang Y., Liu Y., Zhang Y. et al. // J. Alloys Compounds. 2014. V. 585. P.674. https://doi.org/10.1016/j.jallcom.2013.09.208
  8. Orimo S.-I., Nakamori Y., Eliseo J.R. et al. // Chem. Rev. 2007.V. 107. P. 4111. https://doi.org/10.1021/cr0501846
  9. Satyapal S., Petrovic J., Read C. et al. // Catal. Today. 2007. V. 120. P. 246. https://doi.org/10.1016/j.cattod.2006.09.022
  10. Lu J., Fang Z.Z., Sohn H.Y. et al. // Inorg. Chem. 2006. V. 45. P. 8749. https://doi.org/10.1021/ic060836o
  11. Zavorotynska O., El-Kharbachi A., Deledda S. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P.14387. https://doi.org/10.1016/j.ijhydene.2016.02.015
  12. Klyukin I.N., Vlasova Y.N., Novikov A.S. et al. // Symmetry. 2021.V.13. P. 464. https://doi.org/10.3390/sym13030464
  13. Klyukin I.N., Novikov A.S., Zhdanov A.P. et al. // Polyhedron. 2020.V.187. P. 114682. https://doi.org/10.1016/j.poly.2020.114682
  14. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2016. Т. 61. С. 767.
  15. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2017. Т. 62. С. 305.
  16. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2018. Т. 63. С. 190.
  17. Solovev M.V., Chashchikhin O.V., Dorovatovskii P.V. et al. // J. Power Sources. 2018. V. 377. P. 93. https://doi.org/10.1016/j.jpowsour.2017.11.090
  18. Soloveichik G., Her J.-H., Stephens P.W. et al. // Inorg. Chem. 2008. V. 47. P. 4290. https://doi.org/10.1021/ic7023633
  19. Guo Y., Wu H., Zhou W. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 4690. https://doi.org/10.1021/ja1105893
  20. Yang Y.J., Gao M.X., Liu Y.F. et al. // Int. J. Hydrogen Energy. 2012. V.37.P.10733. https://doi.org/10.1016/j.ijhydene.2012.04.068
  21. Yang Y., Liu Y., Li Y. et al. // Chem. Asian J. 2013. V. 8. P. 476. https://doi.org/10.1002/asia.201200970
  22. Yang Y., Liu Y., Li Y. et al. // J. Phys. Chem. C. 2013. V. 117. P. 16326. https://doi.org/10.1021/jp404424m
  23. Jepsen L.H., Ley M.B., Filinchuk Y. et al. // Chem-Sus. Chem. 2015. V.8. P. 1452. https://doi.org/10.1002/cssc.201500029
  24. Paskevicius M., Jepsen L.H., Schouwink P. et al. // Chem. Soc. Rev. 2017. V. 46. P. 1565. https://doi.org/10.1039/c6cs00705h
  25. Yan Y., Dononelli W., Jorgensen M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 9204. https://doi.org/10.1039/d0cp00158a
  26. Chen X., Yu X. et al. // J. Phys. Chem. C. 2012. V. 116. P. 11900. https://doi.org/10.1021/jp301986k
  27. Yuan P.-F., Wang F., Sun Q. et al. // Int. J. Hydrogen Energy. 2013. V. 38. P. 2836. https://doi.org/10.1016/j.ijhydene.2012.12.075
  28. Wang K., Zhang J.-G., Lang X.-Q. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015. https://doi.org/10.1039/C5CP06808H
  29. Chen X., Li R., Xia G. et al. // RSC Adv. 2017. V. 7. P. 31027. https://doi.org/10.1039/c7ra05322c
  30. Chen X., Zou W., Li R. et al. // J. Phys. Chem. C. 2018. V. 122. P. 4241. https://doi.org/10.1021/acs.jpcc.8b00455
  31. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1425.
  32. Becke A.D. et al. // J.Chem.Phys. 1993. V.98. P. 5648. https://doi.org/10.1063/1.464913
  33. Johnson B.J., Gill P.M.W., Pople J.A. et al. // J. Chem. Phys. 1993. V. 98. P. 5612.
  34. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010. https://doi.org/10.1063/1.464906

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Configurations of the [Mg(BH4)22NH3]2 system that occur when up to three H2 molecules are removed. The number after the letter D indicates the number of H2 molecules removed.

Baixar (3MB)
3. Fig. 2. Gibbs energies for the configurations of the [Mg(BH4)22NH3]2 system arising from the removal of up to four (D0‒D4) and up to nine (D4‒D9) H2 molecules.

Baixar (537KB)
4. Fig. 3. Configurations of the [Mg(BH4)22NH3]2 system that occur when four to eight H2 molecules are removed.

Baixar (2MB)
5. Fig. 4. Configurations of the [Mg(BH4)22NH3]2 system that occur when eight to ten H2 molecules are removed.

Baixar (2MB)
6. Fig. 5. Gibbs energies for configurations of the Mg(BH4)22NH3]2 system that occur when nine to twelve (D9‒D12) H2 molecules are removed.

Baixar (285KB)
7. Fig. 6. Configurations of the [Mg(BH4)22NH3]2 system arising from the removal of eleven and twelve H2 molecules, and complexes arising from the unification of D9‒D12 structures.

Baixar (2MB)
8. Fig. 7. Configurations of the [Mg(BH4)22NH3]4 system that occur when eighteen to nineteen H2 molecules are removed.

Baixar (3MB)
9. Fig. 8. Configurations of the [Mg(BH4)22NH3]4 system that occur when nineteen to twenty-three H2 molecules are removed.

Baixar (3MB)
10. Fig. 9. Gibbs energies for the configurations of the [Mg(BH4)22NH3]4 system arising at a distance of eighteen to twenty-three H2 molecules.

Baixar (322KB)
11. Supplement
Baixar (79KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024