In situ синтез композита нано-CeO2 и хитозана

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом соосаждения получены наноразмерные частицы оксида церия (CeO2) с использованием хитозана в качестве темплата, нитрата церия(III) и сульфата церия(IV) в качестве исходных материалов и водного раствора аммиака в качестве осаждающего агента. Методом РФА установлено, что в реакционных системах образуется церианит с гранецентрированной кубической фазой. Размер областей когерентного рассеяния составляет ⁓3 нм и менее. Данные ИК-Фурье-спектроскопии свидетельствуют о взаимодействии молекул полимера с неорганическим компонентом. Сдвиг полос поглощения, относящихся к связям N–H для композитов с Ce(III) и Ce(IV), относительно хитозана указывает на взаимодействие аминогрупп с частицами CeO2, встроенными в полимер. Использование хитозана в качестве матрицы для синтеза наночастиц CeO2 показало, что такой подход является более экономичным и простым к изготовлению наноматериалов различного назначения.

Полный текст

Доступ закрыт

Об авторах

Л. А. Земскова

Институт химии ДВО РАН

Автор, ответственный за переписку.
Email: zemskova@ich.dvo.ru
Россия, пр-т 100-летия Владивостока, 159, Владивосток, 690022

В. Е. Силантьев

Институт химии ДВО РАН; Дальневосточный федеральный университет, Школа медицины и наук о жизни

Email: vladimir.silantyev@gmail.com
Россия, пр-т 100-летия Владивостока, 159, Владивосток, 690022; пос. Аякс, 10, корп. М, Владивосток, 690022

Д. Х. Шлык

Институт химии ДВО РАН

Email: zemskova@ich.dvo.ru
Россия, пр-т 100-летия Владивостока, 159, Владивосток, 690022

Список литературы

  1. Иванов В.К., Щербаков А.Б., Усатенко А.В. // Успехи химии. 2009. Т. 78. № 9. С. 924.
  2. Иванов В.К., Полежаева О.С., Третьяков Ю.Д. // Рос. хим. журн. 2009. Т. 53. № 2. С. 56.
  3. Кузнецова С.А., Халипова О.С., Козик В.В. Пленки на основе диоксида церия: получение, свойства, применение. Томск: Издательский дом Томского гос. ун-та, 2016. 200 с.
  4. Shcherbakov A.B., Reukov V.V., Yakimansky A.V. et al. // Polymers. 2021. V. 13. № 6. P. 924. https://doi.org/10.3390/polym13060924
  5. Иванов В.К., Козик В.В., Шапорев А.С. и др. // Химия в интересах устойчивого развития. 2011. Т. 19. С. 249.
  6. Лысенко Н.Д., Швец А.В., Ильин В.Г. // Теоретическая и экспериментальная химия. 2008. Т. 44. № 3. С. 186.
  7. Melnikova N., Malygina D., Korokin V. et al. // Molecules. 2023. V. 28. P. 2604. https://doi.org/10.3390/molecules28062604
  8. Шишмаков А.Б., Микушина Ю.В., Корякова О.В. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 867. https://doi.org/10.31857/S0044457X22602231
  9. Sifontes A.B., Gonzalez G., Ochoa J.L. et al. // Mater. Res. Bull. 2011. V. 46. P. 1794. https://doi.org/10.1016/j.materresbull.2011.07.049
  10. Sifontes A.B., Rosales M., Méndez F.J. et al. // J. Nanomater. 2013. V. 2013. P. 265797. http://dx.doi.org/10.1155/2013/265797
  11. Rahdar A., Aliahmad M., Hajinezhad M.R. et al. // J. Mol. Struct. 2018. V. 1173. P. 166. https://doi.org/10.1016/j.molstruc.2018.06.092
  12. Kaygusuz H., Torlak E., Akın-Evingür G. et al. // Int. J. Biol. Macromol. 2017. V. 105. P. 1161. http://dx.doi.org/10.1016/j.ijbiomac.2017.07.144
  13. Petrova V.A., Gofman I.V., Dubashynskaya N.V. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 5415. https://doi.org/10.3390/ijms24065415
  14. Petrova V.A., Dubashynskaya N.V., Gofman I.V. et al. // Int. J. Biol. Macromol. 2023. V. 229. P. 329. https://doi.org/10.1016/j.ijbiomac.2022.12.305
  15. Bhushan S., Singh S., Maiti T.K. et al. // Int. J. Biol. Macromol. 2023. V. 236. P. 123813. https://doi.org/10.1016/j.ijbiomac.2023.123813
  16. Kluczka J., Dudek G., Kazek-Kęsik A. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 1567. https://doi.org/10.3390/ijms20071567
  17. Wujcicki Ł., Mańdok T., Budzińska-Lipka W. et al. // Sci. Rep. 2023. V. 13. № 1. P. 13049. https://doi.org/10.1038/s41598-023-40064-1
  18. Farokhi M., Parvareh A., Moraveji M.K. // Environ. Sci. Pollut. Res. Int. 2018. V. 25. № 27. P. 27059. https://doi.org/10.1007/s11356-018-2594-x
  19. Zhang L., Zhu T., Liu X. et al. // J. Hazard. Mater. 2016. V. 308. P. 1. https://doi.org/10.1016/j.jhazmat.2016.01.015
  20. Pourjavadi A., Mahdavinia G.R., Zohuriaan-Mehr M.J. et al. // J. Appl. Polym. Sci. 2003.V. 88. P. 2048. https://doi.org/10.1002/app.11820
  21. Wang S., Gu F., Li C. et al. // J. Cryst. Growth. 2007. V. 307. P. 386. https://doi.org/10.1016/j.jcrysgro.2007.06.025
  22. Шахно И.В., Шевцова З.Н., Федоров П.И. и др. Химия и технология редких и рассеянных элементов. М.: Высшая школа, 1976. Ч. II. 360 с.
  23. Петухов О.Ф., Рузиев Б.Т., Курбанов М.А. и др. // Горный вестник Узбекистана. 2021. № 3 (86). С. 49. https://doi.org/10.54073/GV.2021.2.86.013
  24. Shukla S.K., Mishra A.K., Arotiba O.A. et al. // Int. J. Biol. Macromol. 2013. V. 59. P. 46. http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043
  25. Zhitomirsky I. // J. Mater. Sci. 2006. V. 41. P. 8186. http://dx.doi.org/10.1007/s10853-006-0994-7
  26. Хитин и хитозан: природа, получение и применение. Материалы проекта CYNED IV.14 Хитин и хитозан из отходов переработки ракообразных / Под ред. M.Sc Ana Pastor de Abram. М.: Российское хитиновое общество, 2010. 292 с.
  27. Братская С.Ю., Пестов А.В. Хелатирующие производные хитозана. Владивосток: Дальнаука, 2016. 232 с.
  28. Tsurkan M.V., Voronkina A., Khrunyk Y. et al. // Carbohydr. Polym. 2021. V. 252. P. 117204. https://doi.org/10.1016/j.carbpol.2020.117204
  29. Socrates G. Infrared and Raman characteristic group frequencies: tables and charts // George Socrates. Chichester: John Wiley & Sons Ltd., 2001. 368 p.
  30. Коттон Ф., Уилкинсон Дж. Современная неорганическая химия / Пер. с англ. М.: Мир, 1969. Ч. 3. 224 с.
  31. Мочалова А.Е., Смирнова Л.А. // Высокомолекулярные соединения. Сер. Б. 2018. Т. 60. № 2. C. 89. https://doi.org/10.7868/S2308113918020018

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. ИК-Фурье-спектры поглощения в широком диапазоне и в области 500–800 см–1: ХТЗ (1, 1а), композитов Ce_3_Chit (2, 2а) и Ce_4_Chit (3, 3а).

Скачать (299KB)
3. Рис. 2. Дифрактограммы образцов гибридных материалов Ce_3_Chit (1), Ce_4_Chit (2).

Скачать (91KB)
4. Рис. 3. СЭМ-изображения композитов Ce_3_Chit (а) и Ce_4_Chit (б).

Скачать (154KB)
5. Рис. 4. Результаты ЭДС-анализа композитов Ce_3_Chit (а) Ce_4_Chit (б).

Скачать (428KB)

© Российская академия наук, 2024