COMPARATIVE ANALYSIS OF THE INFLUENCE OF SURFACE QUANTUM EFFECTS ON THE OPTICAL CHARACTERISTICS OF NANOPARTICLES OF ALKALI AND NOBLE METALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the discrete element method, a mathematical model has been built making it possible to carry out a comparative analysis of the influence of volume and surface quantum effects on the optical properties of alkali and noble metal nanoparticles located in a dense external environment. A significant difference in the manifestations of volume and surface quantum effects in alkali metal nanoparticles has been detected. In particular, in such particles plasmon resonance in the case of volume quantum effect shifts to the shortwave region (blue shift) while the surface effect leads to a shift to the longwave region (red shift). It is shown that this shift significantly depends on the density of the environment and can reach 50 nm in the spectral region.

About the authors

Yu. A Eremin

Lomonosov MSU

Email: eremin@cs.msu.ru
Moscow

V. V Lopushenko

Lomonosov MSU

Email: lopushnk@cs.msu.ru
Moscow

References

  1. Shi H., Zhu X., Zhang S., et al. Plasmonic metal nanostructures with extremely small features: New effects, fabrication and applications // Nanoscale Adv. 2021. V. 3. 4349.
  2. David C., Garca de Abajo F. Spatial Nonlocality in the Optical Response of Metal Nanoparticles // J. Phys. Chem. C. 2011. V. 15. Р. 19470–19475.
  3. David C., Garca de Abajo F. Surface plasmon dependence on the electron density profile at metal surfaces // ACS Nano. 2014. V. 8.N9. 9558.
  4. Savage K. J., Hawkeye M. M., Esteban R., et al. Revealing the Quantum Regime in Tunnelling Plasmonics // Nature. 2012. V. 491. Р. 574–577.
  5. Mortensen N. A., Raza S., Wubs M., et al. A generalized non-local optical response theory for plasmonic nanostructures // Nat. Commun. 2014. V. 5. 3809.
  6. Toscano G., Straubel J., Kwiatkowski A., et al. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics // Nat. Commun. 2015. V. 6. 7132.
  7. Tserkezis C., Yan W., Hsieh W., et al. On the Origin of Nonlocal Damping in Plasmonic Monomers and Dimers // Int. J. Mod. Phys. B. 2017. V. 31. 1740005.
  8. Kupresak M., Zheng X., Vandenbosch G. A. E., Moshchalkov V. V. Appropriate Nonlocal Hydrodynamic Models for the Characterization of Deep-Nanometer Scale Plasmonic Scatterers // Adv. Theory Simul. 2020. V. 3. 1900172.
  9. Mortensen N. A. Mesoscopic electrodynamics at metal surfaces (Review) // Nanophotonics 2021. V. 10. N 10. Р. 2563–2616.
  10. Echarri R. A, Goncalves P. A. D., Tserkezis C., et al. Optical response of noble metal nanostructures: Quantum surface effects in crystallographic facets // Optica. 2021. V. 8. N 5. Р. 710–721.
  11. Stamatopoulou P. E., Tserkezis C. Finite-size and quantum effects in plasmonics: manifestations and theoretical modelling [Invited] // Optical Materials Express. 2022. V. 12. N. 5. Р. 1869–1893.
  12. Feibelman P. J. Surface electromagnetic fields // Prog. Surf. Sci. 1982. V. 12. Р. 287–407.
  13. Yang F., Ding K. Transformation optics approach to mesoscopic plasmonics // Phys. Rev. B. 2022. V. 105. L121410.
  14. Еремин Ю. А., Свешников А. Г. Квазиклассические модели квантовой наноплазмоники на основе метода Дискретных источников (обзор) //Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 4. С. 34– 62.
  15. Еремин Ю. А., Лопушенко В. В. Анализ влияния квантовых эффектов на оптические характеристики плазмонных наночастиц методом дискретных источников // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 11. С. 1911–1921.
  16. Eremin Yu. A., Tsitsas N. L., Kouroublakis M., Fikioris G. New scheme of the discrete sources method for two-dimensional scattering problems by penetrable obstacles // J. Computat. Appl. Math. 2023. V. 417. 114556.
  17. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М.: Мир, 1987.
  18. Raza S., Bozhevolnyi S. I., Wubs M., Mortensen N. A. Nonlocal optical response in metallic nanostructures. Topical Review // J. Phys. Condens. Matter. 2015. V. 27. N183204.
  19. Mortensen N. A., Goncalves P. A. D., Shuklin F. A., et al. Surface-response functions obtained from equilibrium electron-density profiles // Nanophotonics. 2021. V. 10. N 14. Р. 3647–3657.
  20. Goncalves P. A. D., Christensen T., Rivera N., et al. Plasmon–emitter interactions at the nanoscale // Nat. Commun. 2020. V. 11. Р. 366.
  21. Еремин Ю. А., Свешников А. Г. Математические модели задач нанооптики и биофотоники на основе метода дискретных источников // Ж. вычисл. матем. и матем. физ. 2007. Т. 47. № 2. C. 266.
  22. Eriksen M. H., Tserkezis C., Mortensen N. A., Cox J. D. Nonlocal effects in atom-plasmon interactions // ArXiv. 2023. 2308.09134v.
  23. Bundgaard I. J., Hansen C. N., Stamatopoulou P. E., Tserkezis C. Quantum-informed plasmonics for strong coupling: the role of electron spill-out // ArXiv. 2023. 2311.06030v.
  24. Zhang H., Huang C. Optical response and spill-out effects of metal nanostructures with arbitrary shape // J. Opt. Soc. Am. B. 2021. V. 38.N 11. Р. 3285–3291.
  25. Johnson P. B., Christy R. W. Optical constants of the noble metals//Phys. Rev. B. 1972. V. 6. Р. 4370–4379.
  26. Smith N. V. Optical constants of sodium and potassium from 0.5 to 4.0 eV by split-beam ellipsometry // Phs. Rev. 1969. V. 183. Р. 634–644.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences