USING MONTE CARLO WEIGHT SCHEMES FOR WEAKLY IONIZED RAREFIED GAS FLOWS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The description of the procedures of the direct statistical Monte Carlo simulation of weakly ionized flows arising during the flow of returning spacecraft is presented. For ionization and recombination reactions, expressions are given for the model dependence of the probability of reactions on the velocities and energies of the reagents. The dissociative recombination algorithm is presented, the computational efficiency of which is achieved by bypassing the simulation of the interaction of electrons and heavy particles. An approach to the construction of a weight scheme for elastic collisions and chemical reactions is described, which significantly increases the computational efficiency of calculations. An example of using the described numerical models and procedures to study the weakly ionized flow near the return capsule in typical entry conditions of orbiting spacecraft is presented. The calculation results are compared with the data of measurements of plasma parameters in the flight experiment.

About the authors

A. A Shevyryan

S. A. Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS

Email: shevr@itam.nsc.ru
Novosibirsk

E. A Bondar

S. A. Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS

Novosibirsk

References

  1. Bird G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
  2. Kashkovsky A. V., Bondar Ye. A., Zhukova G. A., Ivanov M. S., Gimelshein S. F. Object-oriented software design of real gas effects for the DSMC method // AIP Conf. Proc. 2005. V. 762. N 1. P. 583–588.
  3. Ivanov M. S., Kashkovsky A. V., Vashchenkov P. V., Bondar Ye. A. Parallel object-oriented software system for DSMC modeling of high-altitude aerothermodynamic problems // AIP Conf. Proc. 2011. V. 1333. N 1. P. 211–218.
  4. Shoev G. V., Vashchenkov P. V., Bondar Ye. A. Calculation of the heat flux and pressure on the cone surface in a high-enthalpy non-equilibrium flow of a binary nitrogen mixture (N2/N) // AIP Conf. Proc. 2018. V. 2027. N 1. P. 040010.
  5. Wysong I., Gimelshein S., Bondar Ye., Ivanov M. Comparison of direct simulation Monte Carlo chemistry and vibrational models applied to oxygen shock measurements // Phys. Fluid. 2014. V. 26. N 4. P. 043101.
  6. Galeyev A. Ye., Kashkovsky A. V., Shevyrin A. A., Bondar Ye. A. Comparison of nonequilibrium dissociation models in the direct simulation Monte Carlo method // J. Phys.: Conf. Ser. 2019. V. 1404. P. 012107.
  7. Molchanova A. N., Kashkovsky A. V., Bondar Ye. A. Surface recombination in the direct simulation Monte Carlo method // Phys. Fluid. 2018. V. 30. N 10. P. 107105.
  8. Litvintsev A. S., Molchanova A. N., Bondar Ye. A. Effects of heterogeneous NO production on the aerothermodynamics of high-altitude re-entry // AIP Conf. Proc. 2020. V. 2288. N 1. P. 030090.
  9. Shevyrin A. A., Shkredov T. Yu., Shoev G. V., Bondar Ye. A. Modeling of the plasma environment of re-entry space vehicles // AIP Conf. Proc. 2018. V. 2027. N 1. P. 030031.
  10. Shkredov T., Shoev G., Shevyrin A. Implementation of the tangent-slab approximation for radiation modeling coupled with flowfield computation // AIP Conf. Proc. 2023. V. 2504. N 1. P. 030053.
  11. Lee J.-H. Basic governing equation for flight regimes of Aeroassisted orbital transfer vehicles // AIAA 1984–1729.
  12. Gnoffo P. A., Gupta R. N., Shinn J. L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium // NASA TP V. 2867. 1989.
  13. Kim M. K., Gulhan A., Boyd I. D. Modeling of electron temperature in hypersonic flows // AIAA 2011–1028.
  14. Shevyrin A., Bondar Ye. On the calculation of the electron temperature flowfield in the DSMC studies of ionized re-entry flows // Adv. Aerodyn. 2020. V. 2. N 6.
  15. Bird G. A. Nonequilibrium radiation during re-entry at 10 km/s // AIAA Paper 87–1543. 1987.
  16. Кусов А. Л. Расчет ионизации методом прямого статистического моделирования Монте—Карло // Физ.-хим. кин. в газ. дин. 2016. Т. 17. Вып. 2.
  17. Parent B., Shneider M. N., Macheret S. O. Detailed modeling of plasmas for computational aerodynamics // AIAA J. 2016. V. 54. N 3. P. 898–911.
  18. Kusov A. L., Levashov V. Y., Gerasimov G. Y., Kozlov P. V., Bykova N. G., Zabelinsky I. E. Direct statistical Monte Carlo simulation of argon radiation behind the front of a strong shock wave // Fluid. Dyn. 2023. V. 58. P. 759–772.
  19. Boyd I. D. Modeling backward chemical rate processes in the direct simulation Monte Carlo method // Phys. Fluid. 2007. V. 19. N 12. P. 126103.
  20. Gimelshein S. F., Wysong I. J. Impact of the ionization reaction set in nonequilibrium hypersonic air flows // AIAA J. 2020. V. 58. N 3. P. 1255–1265.
  21. Иванов М. С., Рогазинский С. В. Экономичные схемы прямого статистического моделирования течений разреженного газа // Матем. моделирование. 1989. Т. 1. № 7. C. 130–145.
  22. Shugalevskaia N. V., Shevyrin A. A., Bondar Ye. A. Comparison of modern implementations of the direct simulation Monte Carlo method // J. Phys.: Conf. Ser. 2019. V. 1404. N 012123.
  23. Maltsev R. V. On the Selection of the Number of Model Particles in DSMC Computations // AIP Conf. Proc. 2011. V. 1333. N 1. P. 289–294.
  24. Shevyrin A. A., Bondar Ye. A., Ivanov M. S. Analysis of repeated collisions in the DSMC method // AIP Conf. Proc. 2005. V. 762. N 1. P. 565–570.
  25. Коган М. Н. Динамика разреженного газа (кинетическая теория). М.: Наука, 1967. 440 с.
  26. Ivanov M. S., Markelov G. N., Kashkovsky A. V., Gimelshein S. F. Statistical simulation of high-altitude aerodynamic problems // Proc. 3rd Europ. Symp. on Aerothermodynamics for Space Vehicles, Noordwijk. 1998. ESA SP-426. P. 245–252.
  27. Мальцев Р. В. Численное исследование сверхзвуковых течений разреженных газовых смесей с сильно отличающимися массами компонент. Дис. ... канд. физ.-мат. наук. Новосибирск: ИТ СО РАН, 2014.
  28. Candler G. V., MacCormack R. W. Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium // J. Thermophys. Heat Trans. 1991. V. 5. N 3. P. 266–273.
  29. Суржиков С. Т. Двумерный численный анализ ионизации потока в летном эксперименте RAMC-II // Хим. физика. 2015. Т. 34. № 2. С. 24–42.
  30. Шевырин А. А., Бондарь Е. А., Калашников С. Т., Хлыбов В. И., Дегтярь В. Г. Прямое статистическое моделирование разреженного высокоэнтальпийного течения около капсулы RAM C-II // ТВТ. 2016. Т. 54. № 3. C. 408–414.
  31. Shevyrin A. A., Bondar Ye. A. Coupled kinetic-continuum modeling of reentry vehicle plasma environment // AIP Conf. Proc. 2024. V. 2996. N 1. P. 080015.
  32. Jones W. L., Cross A. E. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second // Tech. Rep. NASA, Washington, D.C., 1972. TN D-6617.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences