INVESTIGATION AND OPTIMIZATION OF THE N-PARTIAL NUMERICAL STATISTICAL ALGORITHM FOR SOLVING THE BOLTZMANN EQUATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The primary goal of the study is to test the hypothesis that the known N-partial statistical algorithm provides an estimate of the solution to the nonlinear Boltzmann equation with an error of order O(1/N). To achieve this, practically important optimal relationships between the value of N and the number n of sample estimates are determined. Numerical results for a problem with a known solution confirm the adequacy of the formulated estimates and conclusions.

About the authors

G. Z Lotova

Institute of Computational Mathematics and Mathematical Geophysics SB RAS; Novosibirsk State University

Email: lot@osmf.sscc.ru
Novosibirsk, Russia

G. A Mikhailov

Institute of Computational Mathematics and Mathematical Geophysics SB RAS; Novosibirsk State University

Novosibirsk, Russia

S. V Rogazinsky

Institute of Computational Mathematics and Mathematical Geophysics SB RAS; Novosibirsk State University

Novosibirsk, Russia

References

  1. Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965. 408 с.
  2. Михайлов Г.А. Весовые методы Монте-Карло. Новосибирск: Изд-во СО РАН, 2000. 248 с.
  3. Михайлов Г.А., Рогазинский С.В. Весовые методы Монте-Карло для приближённого решения нелинейного уравнения Больцмана // Сиб. матем. журнал. 2002. Т. 48. № 3. С. 620—621.
  4. Ivanov H.S., Rogasinsky S.V. Analysis of numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics // Sov. J. Numer. Anal. Math. Modeling. 1988. Vol. 3. № 6. P. 453-465.
  5. Денисик С.А., Лебедев С.Н., Малама Ю.Г. Об одной проверке нелинейной схемы метода Монте-Карло // Ж. вычисл. матем. и матем. физ. 1971. Т.11. № 3. С. 783—785.
  6. Бёрд Г. Молекулярная газовая динамика. М.: Мир, 1981.
  7. Королев А.Е., Яницкий В.Е. Прямое статистическое моделирование столкновительной релаксации в смесях газов с большим различием в концентрациях//Ж. вычисл. матем. и матем. физ. 1983. Т. 23. № 3. С. 674—680.
  8. Иванов М.С., Коротченко М.А., Михайлов Г.А., Рогазинский С.В. Глобально-весовой метод Монте-Карло для нелинейного уравнения Больцмана //Ж. вычисл. матем. и матем. физ. 2005. Т.45. № 10. C. 1860—1870.
  9. Лотова Г.З., Михайлов Г.А. Исследование сверхэкспоненциального роста среднего потока частиц в случайной размножающей среде // Сиб. ж. вычисл. матем. 2023. Т. 26. № 4. С. 401—413.
  10. Бобылев А.В. О точных решениях уравнения Больцмана // Докл. АН СССР. 1975. Т. 225. № 6. С. 1296—1299.
  11. Бобылев А.В. Точные решения нелинейного уравнения Больцмана и теория релаксации максвелловского газа // Теор. и матем. физ. 1984. Т. 60. № 2. С. 280—310.
  12. Михайлов Г.А., Войтишек А.В. Численное статистическое моделирование, методы Монте-Карло. М.: Академия, 2006. 367 с.
  13. Lotova G.Z., Lukinov V.L., Marchenko M.A., Mikhailov G.A., and Smirnov D.D. Numerical-statistical study of the prognostic efficiency of the SEIR model // Rus. J. Numer. Analysis Math. Modelling. 2021. Vol. 36. № 6. P 337— 345.
  14. Pertsev N.V., Loginov K.K., Topchii V.A. Analysis of a stage-dependent epidemic model based on a non-Markov random process // J. Appl. Industr. Math. 2020. V 14. № 3. P. 566—580.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences