Higher-Order Iterative Learning Control Algorithms for Linear Systems
- 作者: Pakshin P.V.1, Emelianova Y.P.1, Emelyanov M.A.1
-
隶属关系:
- Arzamas Polytechnic Institute of the Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- 期: 卷 64, 编号 4 (2024)
- 页面: 644-657
- 栏目: Optimal control
- URL: https://rjonco.com/0044-4669/article/view/665137
- DOI: https://doi.org/10.31857/S0044466924040056
- EDN: https://elibrary.ru/ZKANBV
- ID: 665137
如何引用文章
详细
Iterative learning control (ILC) algorithms appeared in connection with the problems of increasing the accuracy of performing repetitive operations by robots. They use information from previous repetitions to adjust the control signal on the current repetition. Most often, information from the previous repetition only is used. ILC algorithms that use information from several previous iterations are called higher-order algorithms. Recently, interest in these algorithms has increased in the literature in connection with robotic additive manufacturing problems. However, in addition to the fact that these algorithms have been little studied, there are conflicting estimates regarding their properties. This paper proposes new higher-order ILC algorithms for linear discrete and differential systems. The idea of these algorithms is based on an analogy with multi-step methods in optimization theory, in particular, with the heavy ball method. An example is given that confirms the possibility to accelerate convergence of the learning error when using such algorithms.
全文:

作者简介
P. Pakshin
Arzamas Polytechnic Institute of the Nizhny Novgorod State Technical University n.a. R.E. Alekseev
编辑信件的主要联系方式.
Email: pakshinpv@gmail.com
俄罗斯联邦, Arzamas
Yu. Emelianova
Arzamas Polytechnic Institute of the Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Email: emelianovajulia@gmail.com
俄罗斯联邦, Arzamas
M. Emelyanov
Arzamas Polytechnic Institute of the Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Email: mikhailemelianovarzamas@gmail.com
俄罗斯联邦, Arzamas
参考
- Arimoto S., Kawamura S., Miyazaki F. Bettering operation of robots by learning // J. Robot. Syst. 1984. V. 1. P. 123—140.
- Bristow D. A., Tharayil M., Alleyne A. G. A survey of iterative learning control: A learning-based method for high-performance tracking control // IEEE Control Syst. Magaz. 2006. V. 26. № 3. P. 96—114.
- Ahn H-S., Chen Y. Q., Moore K. L. Iterative learning control: Survey and categorization // IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2007. V. 37. № 6. P. 1099—1121.
- Rogers E., Chu B., Freeman C., Lewin P. Iterative learning control algorithms and experimental benchmarking Chichester: John Wiley & Sons, 2023.
- Lim I., Hoelzle D. J., Barton K. L. A multi-objective iterative learning control approach for additive manufacturing applications // Control Engineer. Practice. 2017. V. 64. P. 74—87.
- Sammons P. M., Gegel M. L., Bristow D. A., Landers R. G. Repetitive process control of additive manufacturing with application to laser metal deposition // IEEE Transact. Control Syst. Technol. 2019. V. 27. № 2. P. 566—575.
- Freeman C. T., Rogers E., Hughes A.-M., Burridge J. H., Meadmore K. L. Iterative learning control in health care: electrical stimulation and robotic-assisted upper-limb stroke rehabilitation // IEEE Control Syst. Magaz. 2012. V. 47. P. 70—80.
- Meadmore K. L., Exell T. A., Hallewell E., Hughes A.-M., Freeman C. T., Kutlu M., Benson V., Rogers E., Burridge J. H. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study // J. of NeuroEngineer. and Rehabilitation. 2014. P. 11—105.
- Ketelhut M., Stemmler S., Gesenhues J., Hein M., Abel D. Iterative learning control of ventricular assist devices with variable cycle durations // Control Engineer. Practice. 2019. V. 83. P. 33—44.
- Поляк Б. Т. О некоторых способах ускорения сходимости итерационных методов // Ж. вычисл. матем. и матем. физ. 1964. Т. 4. № 5. С. 791—803.
- Поляк Б. Т. Введение в оптимизацию. М.: Наука, 1983.
- d’Aspremont A., Scieur D., Taylor A. Acceleration Methods // arXiv:2101.09545v3. 2021.
- Ahn H.-S., Moore K. L., Cheh Y. Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems. London: Springer-Verlag, 2007.
- Bien Z., Huh K. M. Higher-order iterative learning control algorithm // IEE Proc. D-Control Theory Appl. 1989. V. 136. P. 105—112.
- Chen Y., Gong Z., Wen C. Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays // Automatica. 1998. V. 34. P. 345—353.
- Norrlof M., Gunnarsson S. A frequency domain analysis of a second order iterative learning control algorithm // Proc. 38th IEEE Conf. Decis. Control. 1999. V. 2. P. 1587—1592.
- Bu X., Yu F., Fu Z., Wang F. Stability analysis of high-order iterative learning control for a class of nonlinear switched systems // Abstract Appl. Anal. 2013. V. 2013. P. 1—13.
- Wei Y.-S., Li X.-D. Robust higher-order ILC for non-linear discrete-time systems with varying trail lengths and random initial state shifts // IET Control Theory Appl. 2017. V. 11. P. 2440—2447.
- Wang X., Chu B., Rogers E. Higher-order Iterative Learning Control Law Design using Linear Repetitive Process Theory: Convergence and Robustness // IFAC PapersOnLine. 2017. V. 50—1. P. 3123—3128.
- Phan M. Q., Longman R. W. Higher-order iterative learning control by pole placement and noise filtering // IFAC Proc. Volumes. 2002. V. 35. P. 25—30.
- Gu P., Tian S., Chen Y. Iterative learning control based on Nesterov accelerated gradient method // IEEE Access. 2019. V. 7. P. 115 836—115 842.
- Нестеров Ю. Е. Метод рeшения задачи выпуклого программирования со скоростью сходимости // Докл. АН СССР. 1983. Т. 269. № 3. С. 543—547.
- Kim D., Fessler J. A. Generalizing the optimized gradient method for smooth convex minimization // arXiv:1607.06764. 2018. P. 1—26.
- Moore K. L. An iterative learning control algorithm for systems with measurement noise // Proc. 38th IEEE Conf. Decis. Control. 1999. V. 1. P. 270—275.
- Saab S. S. Optimality of first-order ILC among higher order ILC // IEEE Transact. on Automatic Control. 2006. V. 51. P. 1332—1336.
- Afkhami Z., Hoelzle D. J., Barton K. Robust higher-order spatial iterative learning control for additive manufacturing systems // IEEE Transact. on Control Systems Technology. 2023. V. 31. P. 1692—1707.
- Pakshin P., Emelianova J., Emelianov M., Gałkowski K., Rogers E. Dissipativity and stabilization of nonlinear repetitive processes // Systems & Control Lett. 2016. V. 91 P. 14—20.
- Цыпкин Я. З. Адаптация и обучение в автоматических системах. М.: Наука, 1968.
- Rogers E., Gałkowski K., Owens D. H. Control systems theory and applications for linear repetitive processes. Berlin: Springer-Verlag, 2007.
- Hładowski Ł., Gałkowski K., Cai Z., Rogers E., Freeman C., Lewin P. Experimentally supported 2D systems based iterative learning control law design for error convergence and performance // Control Engineer. Practice. 2010. V. 18. P. 339—348.
- Hładowski Ł., Gałkowski K., Cai Z., Rogers E., Freeman C., Lewin P. Experimentally supported 2D systems based iterative learning control law design for error convergence and performance // Control Engineer. Practice. 2010. V. 18. P. 339—348.
- Solheim O. A. Design of optimal control systems with prescribed eigenvalues // Int. J. Control. 1972. V. 15. № 1. P. 143—160.
- Кухаренко Н. В. Определение коэффициентов квадратичных функционалов в задачах аналитического конструирования // Технич. кибернетика. 1977. № 4. С. 197—201.
- Богачев А. В., Григорьев В. В., Дроздов В. Н., Коровьяков А. Н. Аналитическое регуляторов по корневым показателям // Автоматика и телемехан. 1979. № 8. С. 21—28.
- Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977.
补充文件
