On the Simultaneous Reduction of a Pair of Unitoid Matrices to Diagonal Form
- Авторлар: Ikramov K.D.1
-
Мекемелер:
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- Шығарылым: Том 63, № 2 (2023)
- Беттер: 227-229
- Бөлім: General numerical methods
- URL: https://rjonco.com/0044-4669/article/view/664888
- DOI: https://doi.org/10.31857/S0044466923020084
- EDN: https://elibrary.ru/BMSMML
- ID: 664888
Дәйексөз келтіру
Аннотация
Let A and B be Hermitian n*n matrices with A being nonsingular. According to a well-known theorem of matrix analysis, these matrices can be brought to diagonal form by one and the same Hermitian congruence transformation if and only if the matrix C = A-1B has a real spectrum and can be diagonalized by a similarity. An extension of this assertion to the case where two unitoid matrices are simultaneously reduced to diagonal form is stated and proved.
Негізгі сөздер
Авторлар туралы
Kh. Ikramov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: ikramov@cs.msu.su
Moscow, Russia
Әдебиет тізімі
- Horn R.A., Johnson C.R. Matrix Analysis. Cambridge: Cambridge University Press, 1985.
- Икрамов Х.Д. К опыту спектральной теории для преобразований эрмитовой конгруэнции // Зап. научн. сем. ПОМИ. 2019. Т. 482. С. 114–119.
Қосымша файлдар
