Approximation of Differential Operators with Boundary Conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The use of spectral methods for solution of boundary value problems is very effective but involves great technical difficulties associated with the implementation of the boundary conditions. There exist several methods of such an implementation, but they are either very cumbersome or require a preliminary analysis of the problem and its reduction to an integral form. We propose a universal means of implementation of the boundary conditions for linear differential operators on a finite interval, which is very simple in its realization. The use of the rational arithmetic allows to assess the effectiveness of this method without interference of the round-off errors. We apply this approach for computation of rational approximations for some fundamental constants. We obtained approximations that in a number of cases are better than those that are given by convergents of regular continued fractions of these constants.

作者简介

V. Varin

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: varin@keldysh.ru
125047, Moscow, Russia

参考

  1. Pashkovskii S. Computational Application of Chebyshev Polynomials and Series. Moscow: Nauka, 1983.
  2. Бабенко К.И. Основы численного анализа. Ижевск: РиХД, 2002.
  3. Gottlieb D., Orszag S.A. Numerical analysis of spectral methods: theory and applications. CBMS Regional Conference Series in Applied Mathematics. 6th printing, 1996.
  4. Lanczos C. Applied Analysis. New-York: Dover Publications, 1956.
  5. Варин В.П., Петров А.Г. Гидродинамическая модель ушной улитки // Ж. вычисл. матем. и матем. физ. 2009. Т.49. № 9. С. 1708–1723.
  6. Wilf H.S. Mathematics for the physical sciences. NewYork: Wiley, 1962.
  7. Johnson D. Chebyshev Polynomials in the Spectral Tau Method and Applications to Eigenvalue Problems // NASA Contractor Report 198451. 1996.
  8. Ortiz E.L., Samara H. An Operational Approach to the Tau Method for the Numerical Solution of Non-Linear Differential Equations // Computing. 1981. V. 27. P. 15–25.
  9. Krylov V.I. Approximate calculation of integrals. New-York, London: Macmillan, 1962.
  10. Gantmacher F.R. Application of the Theory of Matrices. New-York: Chelsea Press, 1960.
  11. Варин В.П. Преобразование последовательностей в доказательствах иррациональности некоторых фундаментальных констант // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 10. С. 1587–1614.
  12. Allen G.D. et al. Padé approximation and Gaussian quadrature // Bull. Austral. Math. Soc. 1974. V. 11. P. 63–69.
  13. Legendre A.M. Èlements de Gèomètrie. (2em. ed). Chez Fermin Didot Père et Fils. Paris, 1823.
  14. Rivoal T. Polynomial continued fractions for // hal-03269677v3. 2022. https://hal.archives-ouvertes.fr/hal-03269677v3.
  15. Кузьмин Р.О. Об одном новом классе трансцендентных чисел // Известия Акад. наук СССР. VII сер. Отд. физ.-мат. наук. 1930. Вып. 6. С. 585–597.
  16. Aptekarev A.I. On linear forms containing the Euler constant // [arXiv:0902.1768v2]. 2009. http://arxiv.org/abs/0902.1768v2.
  17. Варин В.П. Факториальное преобразование некоторых классических комбинаторных последовательностей // Ж. вычисл. матем. и матем. физ. 2018. Т. 59. № 6. С. 1747–1770.
  18. Perron O. Irrazionalzahlen. Berlin, Leipzig: Göschens Lehrbücherei, 1921.
  19. Kauers M., Paule P. The Concrete Tetrahedron. Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Wien: Springer, 2011.
  20. Wasow W. Asymptotic expansions for ordinary differential equations. New-York: Dover Publications, 1987.
  21. Варин В.П. Функциональное суммирование рядов // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 1. С. 3–17.
  22. Wimp J. Sequence transformations and their applications. New-York, etc.: Academic Press, 1981.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (65KB)
3.

下载 (44KB)

版权所有 © В.П. Варин, 2023