DENSITY GRADIENT MODEL IN A SPHERICALLY SYMMETRIC FORMULATION AND ITS EXPLICIT-IMPLICIT DISSIPATIVE DISCRETIZATION FOR STUDYING INTERFACE DYNAMICS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This work is dedicated to the development of an unconditionally gradient-stable (dissipative) numerical method for solving a conservative density gradient model in a spherically symmetric formulation. The algorithm is constructed using the Eyre method based on convex splitting of the system’s free energy. The gradient stability of the algorithm is proven in both semi-discrete and fully discrete cases. Theoretical results are validated through several test calculations. The proposed numerical method is applied to analyze the impact of the specified diffusion mobility on the nature of interface evolution.

作者简介

V. Balashov

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: vladislav.balashov@gmail.com
Moscow, Russia

E. Pavlishina

National Research University Moscow Institute of Physics and Technology

Email: pavlishina.ea@phystech.edu
Dolgoprudny,, Russia

E. Savenkov

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: savenkov@keldysh.ru
Moscow, Russia

参考

  1. Hirt C., Nichols B. Volume of fluid (VOF) method for the dynamics of free boundaries // J. Comput. Phys. 1981. V. 39. № 1. P 201-225.
  2. Расчет газодинамических течений на основе метода концентраций / С.М. Бахрах, Ю.П. Глаголева, М.С. Самигулин, В.Д. Фролов, Н.Н. Яненко, Ю.В. Янилкин // Докл. АН СССР. 1981. Т. 257. № 3. С. 566-569.
  3. Gibou F., Fedkiw R., Osher S. A review of level-set methods and some recent applications // J. Comput. Phys. 2018. V. 353. P. 82-109.
  4. Bellotti T., Graille B., Massot M. Finite Difference formulation of any lattice Boltzmann scheme // Numerische Mathematik. 2022. V. 152. № 1. P. 1-40.
  5. Anderson D.M., McFadden G.B., Wheeler A.A. Diffuse-interface methods in fluid mechanics // Ann. Rev. Fluid Mech. 1998. V. 30. № 1. P. 139-165.
  6. Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. I. Interfacial free energy // J. Chemic. Phys. 1958. V. 28. № 2. P. 258-267.
  7. Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations / H. Gomez, T.J. Hughes, X. Nogueira, V.M. Calo // Comput. Meth. Appl. Mech. Engineer. 2010. V. 199. № 25-28. P. 1828-1840.
  8. Aihara S., Takada N., Takaki T. Highly conservative Allen-Cahn-type multi-phase-field model and evaluation of its accuracy // Theoretic. and Comput. Fluid Dynamic. 2023.
  9. Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces / C. Miqueu, B. Mendiboure, C. Graciaa, J. Lachaise // Fluid Phase Equilibria. 2004. V. 218. № 2. P. 189-203.
  10. Celny D., Vins V., Hruby J. Modelling of planar and spherical phase interfaces for multicomponent systems using density gradient theory // Fluid Phase Equilibria. 2019. V. 483. P. 70-83.
  11. Rehner P., Gross J. Predictive density gradient theory based on nonlocal density functional theory // Phys. Rev. E. 2018. V. 98. № 6. P. 063312.
  12. Демьянов А., Динариев О., Евсеев Н. Основы метода функционала плотности в гидродинамике. Физматлит, 2009.
  13. Eyre D.J. An unconditionally stable one-step scheme for gradient systems, 1997. preprint.
  14. Shen J., Xu J., Yang J. A new class of efficient and robust energy stable schemes for gradient flows // SIAM Rev. 2019. V. 61. № 3. P. 474-506.
  15. Jamet D., Torres D., Brackbill J. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method // J. Comput. Phys. 2002. V. 182. № 1. P. 262-276.
  16. Balashov V., Savenkov E. Thermodynamically consistent spatial discretization of the one-dimensional regularized system of the Navier-Stokes-Cahn-Hilliard equations // J. Comput. Appl. Math. 2020. V. 372. P. 112743.
  17. Балашов В.А., Савенков Е.Б. Регуляризованная изотермическая модель типа фазового поля двухкомпонентной двухфазной сжимаемой жидкости и ее одномерная пространственная дискретизация // Дифференц. уравнения. 2020. Т. 56. № 7. С. 887-900.
  18. Balashov V. Dissipative spatial discretization of a phase field model of multiphase multicomponent isothermal fluid flow // Comput. Math. Appl. 2021. V. 90. P. 112-124.
  19. Yue P., Zhou C., Feng J.J. Spontaneous shrinkage of drops and mass conservation in phase-field simulations // J. Comput. Phys. 2007. V. 223. № 1. P. 1-9.
  20. Буслаев В.С. Вариационное исчисление. Изд-во Ленинградского ун-та, 1980. С. 288.
  21. Михлин С.Г. Курс математической физики. М.: Наука, 1968. С. 576.
  22. Гельфанд И.М., Фомин С.В. Вариационное исчисление. Гос. изд-во физ.-матем. лит-ры, 1961. С. 228.
  23. Калиткин Н. Численные методы. БХВ-Петербург, 2011. С. 592.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024